Зимнее бетонирование с применением нагревательных проводов

Зимнее бетонирование с применением нагревательных проводов

Зимнее бетонирование с применением нагревательных проводов

ВВЕДЕНИЕ

К зимнему бетонированию относятся работы, выполняемые при среднесуточной температуре наружного воздуха ниже 5°С и минимальной суточной температуре ниже 0°С. Считается, что зимнее бетонирование может производиться при температуре воздуха до минус 40°С. На практике зимнее бетонирование освоено до температуры минус 15-20°С.

Для набора бетоном необходимой прочности выполняют специальные мероприятия по подготовке и производству бетонных работ в зимнее время.

Для зимнего бетонирования применяют специальные бетоны с химическими противоморозными и пластифицирующими добавками.

При выполнении работ прогревают свежеуложенный бетон различными способами с применением водяного пара, нагретой воды или электроэнергии.

Свежеуложенный бетон предохраняют от потерь теплоты (метод термоса), укрывая различными утеплителями (матами, покрывалами, полотнищами).

Особые мероприятия, в частности по утеплению рабочих органов и бетоноводов, осуществляют при подготовке машин и технологического оборудования к зимнему бетонированию.

Основное требование при выполнении зимнего бетонирования заключается в создании благоприятных условий для приобретения бетоном в короткий срок необходимой проектной прочности.

Массивные монолитные конструкции (фундаментные плиты и блоки) с модулем поверхности охлаждения М п от 2 до 4 бетонируют способом термоса с применением быстротвердеющих цементов, ускорителей твердения и противоморозных и пластифицирующих добавок.

Конструкции (колонны, блоки, стены) с модулем поверхности охлаждения 4-6 бетонируют способом термоса с применением предварительного подогрева бетонной смеси, нагревательных проводов и греющей опалубки.

Относительно тонкостенные конструкции (перегородки, перекрытия, стены) с модулем поверхности охлаждения 6-12 бетонируют упомянутыми выше способами с применением нагревательных проводов, термоактивных гибких покрытий (ТАГП), греющих плоских элементов (ГЭП).

В данном документе рассматривается способ зимнего бетонирования с применением нагревательных проводов. Этот способ имеет ряд преимуществ по сравнению с нагревом водяным паром, горячей водой, инфракрасным облучением. Эффективность способа повышается в сочетании с другими упомянутыми выше мероприятиями и приемами зимнего бетонирования: использованием высококлассного бетона с химическими добавками, утеплителей, подготовкой машин и технологического оборудования.

Применение нагревательных проводов позволяет возводить здания и сооружения, не отличающиеся по своей прочности от возводимых в летний период.

Настоящий документ содержит методические рекомендации и примеры, которые позволяют подбирать способы работ (режимы, приемы) и материалы для зимнего бетонирования для конкретного объекта строительства, с учетом местных условий и особенностей строительной организации. Выбор способа работ и материалов производится на стадии разработки проекта производства работ (технологических карт), согласовывается с заказчиком и утверждается в установленном порядке.

Настоящий документ необходим не только для разработки упомянутой выше технологической документации, но может быть полезен при лицензировании строительной организации (фирмы) на производство данного вида работ, при сертификации системы управления качеством, при аттестации качества зимнего бетонирования,

В основу документа положены научно-исследовательские работы, выполненные в ЦНИИОМТП и в других институтах строительной отрасли, а также обобщение опыта зимнего бетонирования российских строительных организаций.

При разработке документа использованы нормативные и методические документы, основные из которых приведены в разделе 2.

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Документ распространяется на зимнее бетонирование с применением нагревательных проводов монолитных железобетонных строительных конструкций (плит, стен, перекрытий, колонн и т.п.), имеющих модуль поверхности охлаждения 4-10, при строительстве и ремонте жилых, общественных и производственных зданий и сооружений.

Зимнее бетонирование с применением нагревательных проводов производится при температуре окружающего воздуха, как правило, до минус 20°С.

Документ используется для разработки проектов производства работ (технологических карт), при сертификации монолитных железобетонных конструкций и лицензировании организаций, выполняющих зимнее бетонирование.

Применение документа способствует обеспечению проектной прочности монолитных железобетонных конструкций, возводимых в зимних условиях.

2 НОРМАТИВНЫЕ И МЕТОДИЧЕСКИЕ ДОКУМЕНТЫ

СНиП 3.03.01-87. Несущие и ограждающие конструкции.

СНиП 12-03-2001. Безопасность труда в строительстве. Часть 1. Общие требования.

СНиП 12-04-2002. Безопасность труда в строительстве. Часть 2. Строительное производство.

ГОСТ Р 12.4.026-2001. ССБТ. Цвета сигнальные, знаки безопасности и разметка сигнальная. Назначение и правила применения. Общие технические требования и характеристики. Методы испытаний.

ГОСТ 12.4.059-89. ССБТ. Строительство. Ограждения защитные инвентарные. Общие технические условия.

ГОСТ 23407-78. Ограждения инвентарные строительных площадок и участков производства строительно-монтажных работ. Технические условия.

ГОСТ Р 52085-2003. Опалубка. Общие технические условия.

Руководство по производству бетонных работ в зимних условиях, районах Дальнего Востока, Сибири и Крайнего Севера/ЦНИИОМТП Госстроя СССР. — М.: Стройиздат, 1982.

Рекомендации по электрообогреву монолитного бетона и железобетона нагревательными проводами/ЦНИИОМТП Госстроя СССР. — М., 1989.

3 ОБЩИЕ ПОЛОЖЕНИЯ

3.1 Нагрев бетона осуществляется теплотой, выделяемой электрическими проводами с высоким омическим сопротивлением при подключении их в сеть. Нагревательные провода могут быть заложены непосредственно в массив монолитной железобетонной конструкции для нагрева ее изнутри.

Нагревательные провода укладывают также перед арматурными и опалубочными работами в песчаный слой или в бетонную подготовку для предотвращения замерзания грунтового основания при бетонировании фундаментов.

3.2 Нагревательные провода закладывают так, чтобы не нанести механических повреждений их изоляции и не вызвать тем самым короткого замыкания токонесущей жилы с арматурой, со стальной опалубкой или с другими металлическими деталями, что может произойти в процессах опалубочных и арматурных работ, а также укладки бетонной смеси.

Контактные соединения проводов выполняют плотными, искрение в контактах не допускается.

3.3 Нагревательные провода подключают к сети после полной проектной заливки в опалубку бетонной смеси. Рекомендуется предусматривать подключение к сети проводов, как правило, в ночное время с целью сокращения расходов, допуская перерывы до 7 ч в их электропитании в дневное время. Длительность перерывов зависит от теплоаккумуляторных свойств бетона, массивности конструкции, толщины утеплителя, температуры воздуха и устанавливается опытным путем с помощью строительной лаборатории.

Питание нагревательных проводов осуществляется от электрической сети 220 В (при условии заземления арматуры) или от автономных источников питания, например, дизель-генераторов.

3.4 Режим термообработки бетона определяется, как правило, при следующих ограничениях.

Разность между температурами воздуха и нагретого бетона принимается до 50-60°С и не более 95°С.

Скорость нагревания бетона для конструкций с модулем поверхности охлаждения 4-6 и 7-10 должна быть не более, соответственно, 6 и 10°С/ч.

Время изотермического выдерживания бетона принимается до нескольких суток.

Скорость остывания для конструкций с модулем поверхности охлаждения 4-6 и 7-10 должна быть не более, соответственно, 3 и 5°С/ч.

Разность температуры наружного слоя бетона с коэффициентом армирования около 3 % и воздуха при распалубке для конструкций с модулем поверхности охлаждения 4 и 5 должна быть не более, соответственно, 30 и 40°С.

3.5 Режимы нагревания, изотермической выдержки и остывания бетона поддерживают автоматически путем использования датчиков температуры, встраиваемых в бетон, и автоматического устройства, подключаемого к силовому оборудованию. Автоматизация процесса позволяет оптимизировать режим термообработки бетона и повысить качество бетонирования, способствует, кроме того, экономии электроэнергии до 25 %.

3.6 Опалубка и арматура должны быть очищены от снега и наледи, например, продувкой из шланга горячим воздухом.

Уложенные (намотанные на арматуру) нагревательные провода также следует предохранять от снега и наледи. Из-за таяния снега и наледи в процессе нагрева бетона увеличивается водосодержание, могут возникнуть каверны, свищи, полости в бетоне, что недопустимо.

3.7 Термообработка бетона для конструкций внутри зданий и подземных фундаментов под оборудование без динамических нагрузок производится до тех пор, пока бетон не наберет прочность:

— без противоморозных добавок — не менее 5 МПа;

— с противоморозными добавками — не менее 20 % проектной прочности.

Термообработка бетона без противоморозных добавок для других конструкций зависит от класса бетона и производится до набора бетоном прочности, приведенной в таблице 1.

Прочность бетона, % проектной, в конструкциях

подверженных атмосферному воздействию

переменно замерзающих и оттаивающих в водонасыщенном состоянии

Прогрев бетона нагревательным проводом ПНСВ

Заливка бетона зимой имеет свои сложности. Главной проблемой считается нормальное затвердевание раствора, вода в котором может замерзнуть, и он не наберет технологической прочности. Даже если этого не случится, низкая скорость высыхания состава сделает работы нерентабельными. Прогрев бетона проводом ПНСВ поможет снять этот вопрос.

Электропрогрев бетона в зимнее время – наиболее удобный и дешевый способ достигнуть нужной твердости материала. Он разрешается нормами СП 70.13330.2012, и может применяться при выполнении любых строительных работ. После отвердевания бетона, провод остается внутри конструкции, поэтому применение дешевого ПНСВ дает дополнительный экономический эффект.

  1. Применение
  2. Характеристики провода
  3. Технология прогрева и схема укладки
  4. Расчет длины

Применение

Прогрев бетона в зимнее время кабелем дает возможность решить две основные проблемы. При температурах ниже нуля вода в растворе превращается в кристаллики льда, в результате реакция гидратации цемента не просто замедляется, она прекращается полностью. Известно, что при замерзании вода расширяется, разрушая образовавшиеся в растворе связи, поэтому после повышения температуры он уже не наберет нужной прочности.

Раствор затвердевает с оптимальной скоростью и сохранением характеристик при температуре порядка 20°C. При падении температуры, особенно ниже нуля, эти процессы замедляются, даже с учетом того, что при гидратации выделяется дополнительное тепло. Чтобы выдержать технические условия, зимой не обойтись без прогрева бетона проводом ПНСВ или другим предназначенным для этого кабелем в таких ситуациях, когда:

  • не обеспечена достаточная теплоизоляция монолита и опалубки;
  • монолит слишком массивен, что затрудняет его равномерный прогрев;
  • низкая температура окружающего воздуха, при которой замерзает вода в растворе.

Характеристики провода

Кабель для прогрева бетона ПНСВ состоит из стальной жилы с сечением от 0,6 до 4 мм², и диаметром от 1,2 мм до 3 мм. Некоторые виды покрываются оцинковкой, чтобы снизить воздействие агрессивных компонентов в строительных растворах. Дополнительно он покрыт термоустойчивой изоляцией их поливинилхлорида (ПВХ) или полиэстера, она не боится перегибов, истирания, агрессивных сред, прочна и обладает высоким удельным сопротивлением.
Кабель ПНСВ обладает следующими техническими характеристиками:

  • Удельное сопротивление составляет 0,15 Ом/м;
  • Стабильная работа в температурном диапазоне от -60°C до +50°C;
  • На 1 кубометр бетона расходуется до 60 м провода;
  • Возможность применения до температур до -25°C;
  • Монтаж при температурах до -15°C.

Кабель подключается к холодным концам через провод АПВ из алюминия. Питание может осуществляться через трехфазную сеть 380 В, подключаясь к трансформатору. При правильном расчете ПНСВ может подключаться и к бытовой сети 220 вольт, длина при этом не должна быть менее 120 м. По системе, находящейся в бетонном массиве должен протекать рабочий ток 14-16 А.

Технология прогрева и схема укладки

Перед установкой системы прогрева бетона в зимнее время монтируется опалубка и арматура. После этого раскладывается ПНСВ с интервалом между проводами от 8 до 20 см, в зависимости от наружной температуры, ветра и влажности. Провод не натягивается и прикрепляется к арматуре специальными зажимами. Нельзя допускать изгибов радиусом менее 25 см и перехлестов токоведущих жил. Минимальное расстояние между ними должно составлять 1,5 см, это поможет не допустить короткого замыкания.

Наиболее популярная схема укладки ПНСВ – «змейка», напоминающая систему «теплый пол». Она обеспечивает обогрев максимального объема бетонного массива при экономии греющего кабеля. Перед заливкой в опалубку раствора необходимо убедиться в том, что в ней нет льда, температура смеси не ниже +5°C, а монтаж схемы подключения проведен правильно, на достаточную длину выведены холодные концы.

К проводу ПНСВ прикладывается инструкция, с которой нужно ознакомиться перед тем, как прогреть бетон. Подключение осуществляется через секции шинопроводов двумя способами через схему «треугольник» или «звезда». В первом случае систему разделяют на три параллельных участка, подключаемых к выводам трехфазного понижающего трансформатора. Во втором – три одинаковых провода соединяются в один узел, потом три свободных контакта аналогично подключаются к трансформатору. Питающее устройство устанавливается не далее, чем в 25 м от места подключения, прогреваемый участок обносится ограждением.
Система подключается после полной заливки всего объема строительного раствора. Технология прогрева бетона греющим кабелем ПНСВ включает в себя несколько этапов:

  1. Разогрев осуществляется со скоростью не более 10°C в час, что обеспечивает равномерное прогревание всего объема.
  2. Нагрев при постоянной температуре длится до тех пор, пока бетон не наберет половину технологической прочности. Температура не должна превышать 80°C, оптимальный показатель 60°C.
  3. Остывание бетона должно происходить со скоростью 5°C в час, это поможет избежать растрескивания массива и обеспечит его монолитность.

При соблюдении технологических требований материал наберет марку прочности, соответствующую его составу. По окончанию работ ПНСВ остается в толще бетона и служит дополнительным армирующим элементом.

Нужно отметить, что применять кабель КДБС или ВЕТ значительно проще, поскольку их можно подключать напрямую к сети 220 В через щитовую или розетку. Они разделены на секции, что помогает избежать перегрузки. Но эти кабели стоят дороже ПНСВ, поэтому реже применяется при строительстве крупных объектов.

Еще одна популярная технология – использование опалубки с ТЭН и электродами, когда арматура вставляется в раствор и подключается к сети, используя сварочный аппарат или понижающий трансформатор другого типа. Этот способ прогрева не требует специального греющего кабеля, но более энергозатратен, поскольку вода в бетоне играет роль проводника, а его сопротивление при затвердевании значительно возрастает.

Расчет длины

Чтобы рассчитать длину провода ПНСВ для прогрева бетона требуется учесть несколько основных факторов. Главный критерий – количество тепла, подаваемого на монолит для его нормального затвердевания. Оно зависит от температуры окружающего воздуха, влажности, наличия теплоизоляции, объема и формы конструкции.

В зависимости от температуры определяется шаг укладки кабеля со средней длиной петли от 28 од 36 м. При температуре до -5°C расстояние между жилами или шаг составляет 20 см, с понижением температуры на каждые 5 градусов, он уменьшается на 4 см, при -15°C он составляет 12 см.

При расчете длины важно знать потребляемую мощность нагревательного провода ПНСВ. Для самого популярного диаметра 1,2 мм она равна 0,15 Ом/м, у проводов с большим сечением сопротивление ниже диаметр 2 мм имеет сопротивление 0,044 Ом/м, а 3 мм – 0,02 Ом/м. Рабочий ток в жиле должен быть не более 16 А, поэтому потребляемая мощность одного метра ПНСВ диаметром 1,2 мм равна произведению квадрата силы тока на удельное сопротивление и составляет 38,4 Вт. Чтобы подсчитать суммарную мощность необходимо этот показатель умножить на длину уложенного провода.

Подобным образом рассчитывается и напряжение понижающего трансформатора. Если уложено 100 м ПНСВ диаметром 1,2 мм, то его общее сопротивление составит 15 Ом. Учитывая, что сила тока не более 16 А, находим рабочее напряжение, равное произведению силы тока на сопротивление в данном случае оно будет равно 240 В.

Применение провода ПНСВ – один из самых дешевых способов прогрева бетона. Но он больше годится для применения профессиональными строителями, поскольку для его подключения требуются специальное знание и оборудование. Этот кабель можно применять и в бытовых условиях, правильно рассчитав потребляемую мощность. Снизить расходы при прогреве раствора поможет применение теплоизоляционных материалов, в этом случае нагрев произойдет быстрее, а снижение температуры будет происходить равномернее, что улучшит качество бетона.

Прогрев монолитного бетона

Бетонирование монолитных конструкций в зимнее время, осуществляемое при ожидаемой среднесуточной температуре наружного воздуха ниже + 5°С и минимальной суточной температуре ниже 0°С, должно производиться с обеспечением твердеющему бетону оптимальных температурно-влажностных условий.

С этой целью предусматриваются утепление опалубки, укрытие неопалубленных поверхностей монолитных конструкций гидро- и теплоизолирующими материалами, устройство ветрозащитных ограждений и другие мероприятия, направленные на сохранение тепла, содержащегося в уложенном бетоне. Кроме того, СНиП 3.03.01-87 «Несущие и ограждающие конструкции» рекомендует применение нескольких способов выдерживания и обогрева бетона в зимних условиях. В зависимости от вида конструкции и температуры наружного воздуха рекомендуется применение следующих способов зимнего бетонирования:

  • термос;
  • термос с противоморозными добавками и ускорителями твердения;
  • предварительный разогрев бетонной смеси;
  • электродный прогрев;
  • обогрев в греющей опалубке;
  • инфракрасный обогрев;
  • индукционный нагрев;
  • обогрев нагревательными проводами.

Остановимся на способах зимнего бетонирования, связанных с тепловой обработкой монолитного бетона и железобетона.

Электродный прогрев бетона

Предварительный электроразогрев бетона предусматривает разогрев бетонной смеси с помощью электрического тока напряжением 220-380 В в короткий промежуток времени-5-10 мин до температуры 40-60°С. После укладки горячей бетонной смеси в опалубку она остывает по режимам, рассчитываемым так же, как и для способа термоса. Этот способ зимнего бетонирования требует наличия на строительной площадке большой электрической мощности — от 1000 кВт для разогрева 3-5 м3 бетонной смеси.

Электродный прогрев бетона заключается в том, что выделение тепла происходит непосредственно в бетоне при пропускании через него электрического тока.

В зависимости от принятой схемы расстановки и подключения электродов электродный прогрев разделяется на сквозной, периферийный и с использованием в качестве электродов арматуры. Применение этого метода наиболее эффективно для слабоармированных конструкций — фундаментов, колонн, стен и перегородок, плоских покрытий и бетонных подготовок под полы.

Электродный прогрев монолитных конструкций может быть совмещен с другими способами интенсификации твердения бетона, например с предварительным прогревом бетонной смеси и с использованием различных химических добавок. Применение противоморозных добавок, в состав которых входит мочевина, не допускается из-за разложения ее при температуре выше 40°С. Применение поташа в качестве противоморозной добавки не разрешается вследствие того, что прогретые бетоны с этой добавкой имеют значительный (более 30%) недобор прочности, характеризуются пониженной морозостойкостью и водонепроницаемостью.

Электрообогрев бетона монолитных конструкций в греющей опалубке заключается в непосредственной передаче тепла от греющих поверхностей опалубки к прогреваемому бетону. Распространение тепла в самом бетоне происходит путем теплопроводности.

В качестве нагревателей для греющей опалубки применяются ТЭНы, слюдопластовые нагреватели, греющие кабели, углеграфитовая ткань, сетчатые нагреватели и другие греющие элементы.

Областью применения электрообогрева монолитных конструкций в греющей опалубке в соответствии с положениями СНиП 3.03.01-87 «Несущие и ограждающие конструкции» являются фундаменты под конструкции зданий и оборудование, массивные стены и т.п. конструкции с модулем поверхности 3-6; колонны, балки, прогоны, элементы рамных конструкций, свайные ростверки, стены, перекрытия с модулем поверхности 6-10; полы, перегородки, плиты перекрытий, тонкостенные конструкции с модулем поверхности 10-20, бетонирование которых производится при температуре воздуха до -40°С.

бетонирование в зимних условиях

Страница 1 из 6123>6 »

LISP, C# (ACAD 200[9,12,13,14])

__________________


Обращение ко мне — на «ты».
Все, что сказано — личное мнение.
Кулик Алексей aka kpblc
Посмотреть профиль
Посетить домашнюю страницу Кулик Алексей aka kpblc
Найти ещё сообщения от Кулик Алексей aka kpblc

LISP, C# (ACAD 200[9,12,13,14])

__________________


Обращение ко мне — на «ты».
Все, что сказано — личное мнение.
Кулик Алексей aka kpblc
Посмотреть профиль
Посетить домашнюю страницу Кулик Алексей aka kpblc
Найти ещё сообщения от Кулик Алексей aka kpblc

Вложения

Зимнее бетонирование.rar (1.28 Мб, 3167 просмотров)

Из одной замечательной книжки. Если надо подробнее, пишите

Все добавки (природные или искусственные химические продукты) клас-сифицируются по механизму их действия и разделяются на четыре класса:
1-й – добавки, изменяющие растворимость минеральных вяжущих материа-лов и не вступающие с ними в химические реакции;
2-й – добавки, реагирующие с вяжущими с образованием труднораствори-мых или малодиссоциированных комплексных соединений;
3-й – добавки – готовые центры кристаллизации («затравки»);
4-й – органические поверхностно-активные вещества (ПАВ), способные кК адсорбции на поверхности твердой фазы.
В зависимости от назначения (основного эффекта действия) химические добавки для бетонов подразделяются на следующие виды:
1. Регулирующие свойства бетонных смесей:
а) пластифицирующие:
I группы (суперпластфикаторы);
II группы (сильнопласитфицирующие);
III группы (среднепластифицирующие);
IV группы (слабопластифицирующие);
б) стабилизирующие;
в) водоудерживающие;
г) улучшающие перекачиваемость;
д) регулирующие сохраняемость бетонных смесей:
— замедляющие схватывание;
— ускоряющие схватывание;
е) поризующие (для легких бетонов):
— воздухововлекающие;
— пенообразующие;
— газообразующие;
2. Регулирующие твердение бетона:
а) замедляющие твердение;
б) ускоряющие твердение;
3. Повышающие прочность и (или) коррозионную стойкость, морозостой-кость бетона и железобетона, снижающие проницаемость бетона:
а) водоредцирующие I, II, III и IV групп;
б) кольматирующие;
в) воздухововлекающие;
г) газообразующие;
д) повышающие защитные свойства бетона по отношению к стальной арма-туре (ингибиторы коррозии стали).
4. Придающие бетону специальные свойства:
а) гидрофобизирующие I, II и III групп;
б) противоморозные (обеспечивающие твердение при отрицательных тем-пературах);
в) биоцидные;
г) полимерные.
5. Тонкодисперсные минеральные добавки:
а) неактивные;
б) активные;
в) минеральные пластифицирующие.
6. Комплексные добавки:
а) комплексные химические добавки;
б) органо-минеральные добавки.
Выбор добавок
Химические добавки для тяжелого, легкого, мелкозернистого бетонов и строительных растворов следует выбирать на основании рекомендаций норма-тивно-технической документации и технико-экономических расчетов.
Выбор добавки должен производиться в зависимости от технологии приго-товления бетонной смеси и от способа изготовления изделий и конструкций с учетом влияния добавок на свойства бетонной смеси и бетона.
Применение добавок в тяжелом и мелкозернистом бетонах позволяет ре-шить следующие технологические задачи:
— уменьшение расхода дорогого цемента;
— уменьшение расхода дефицитного крупного заполнителя – вплоть до за-мены тяжелого бетона мелкозернистым;
— улучшение технологических и реологических свойств смесей;
— регулирование потери подвижности смесей во времени, скорости процес-сов схватывании и твердения;
сокращение продолжительности тепловой обработки бетона в тепловых аг-регатах;
ускорение сроков распалубливания при естественном твердении бетона в условиях строительной площадки;
повышение прочности, водо- и газонепроницаемости бетона;
повышение морозостойкости, коррозионной стойкости бетона и железобе-тона;
— усиление защитного действия бетона по отношению к арматуре.
Для бетонов, к которым предъявляются специальные требования по долго-вечности (морозостойкости, водонепроницаемости, коррозионной стойкости и другим показателям), выбор добавок следует производить по ведущему агрессив-ному воздействию.
Снижение материалоемкости бетонов может быть достигнуто за счет при-менения водоредуцирующих добавок (суперпластификаторов и комплексных до-бавок на их основе). Их использование позволяет в равнопрочных бетонах уменьшить расход цемента на 15-20%.
Для получения бетонной смеси с требуемыми технологическими свойства-мив ее состав рекомендуется вводить следующие добавки:
— для приготовления литых и высокопрочных бетонных смесей — суперпла-стификаторы и сильнопластифицирующие добавки;
— для снижения жесткости и увеличения подвижности – пластифицирую-щие, воздухововлекающие и комплексные на их основе;
— для повышения однородности и связности бетонной смеси — стабилизи-рующие, слабопластифицирующие, воздухововлекающие, гидрофобизирующие;
— для ускорения твердения или повышения электропроводности смеси — до-бавки ускорителей твердения и ингибиторов коррозии стали.
Для получения бетонов высокой плотности и высокопрочных бетонов клас-сов В40 и более обязательно введение суперпластификаторов на их основе.
Для обеспечения стойкости бетонных и железобетонных конструкций в за-висимости от условий эксплуатации и вида коррозионного воздействия агрессив-ной среды необходимо применять следующие добавки:
— для повышения морозостойкости бетона – воздухововлекающие, газообра-зующие, слабопластифицирующие, гидрофобизирующие;
— для повышения стойкости бетона при воздействии солей, в том числе в условиях капиллярного подсоса и испарения – те же, что для повышения морозо-стойкости, а также суперпластификаторы, гидрофобизирующие и кальматирую-щие;
— для повышения непроницаемости бетона – кольматирующие, водореду-цирующие, воздухововлекающие;
Для повышения защитного действия по отношению к стальной арматуре – ингибиторы коррозии: НН и ННК – для конструкций предназначенных для экс-плуатации в слабоагрессивных средах, а комплексные:НН+ТБН, НН+БХН, НН+БХК – для конструкций, предназначенных для эксплуатации в средне- и сильноагрессивных средах.
Для сокращения режима тепловой обработки, а также для ускорения твер-дения бетонов, выдерживаемых на строительной площадке в естественных усло-виях, в состав бетона следует вводить добавки ускорителей твердения и комплексные на их основе.
Добавки, повышающие защитные свойства бетона по отношению к сталь-ной арматуре (ингибиторы коррозии стали)
Стальная арматура, находящаяся в бетоне на некотором расстоянии от по-верхности конструкции, в сильнощелочной среде (pH=12,5) покрывается из окси-дов и . Толщина этой пленки составляет приблизительно 80-100 А, что вполне достаточно для того, что бы защитить стальную арматуру от воздейст-вия внешней среду. Когда у поверхности арматуры образуется среда, содержащая достаточное количество молекул кислорода, начинается депассивация стали.
В присутствии хлоридов коррозия стали разрушения хлорид ионами защит-ной пленки на металле. Ионы хлора, вступая в химическое взаимодействие, пре-образуют защитную пленку из оксида железа в растворимый хлорид железа. Механизм коррозии включает адсорбцию хлорид-ионов и образование комплекса на поверхности стали.
Основным фактором, обеспечивающим защиту стали от действия хлоридов в бетоне, является низкая проницаемость бетона. Однако, в некоторых случаях даже бетон с низкой проницаемостью не обеспечивает достаточной защиты. В та-ких случаях требуется дополнительная защита стали от коррозии либо путем не-посредственной обработки арматуры, либо путем усиления защиты, обеспечиваемой бетоном. Последнее может быть достигнуто при введении в бе-тон добавок, замедляющих и предотвращающих реакции металла с окружающей средой.
Несмотря на высокую стоимость обработки 1м3 бетона, использование до-бавок считается экономически целесообразным по сравнению с другими доступ-ными методами предотвращения вредного действия хлоридов и сульфатов на сталь.
Добавки-ингибиторы коррозии стали – это вещества, обеспечивающие вы-сокую коррозионную стойкость арматуры в агрессивных средах.
Эффективность добавок, увеличивающих защитные свойства бетона по от-ношению к стальной арматуре, определяют по изменению плотности электриче-ского тока или потенциала стали по специальной методике.
В строительном производстве разработаны и апробированы практикой сле-дующие добавки, повышающие защитные свойства бетона по отношению к стальной арматуре:
— Нитрит натрия НН. Кристаллический продукт белого цвета с желтова-тым оттенком либо его водные растворы. В присутствии хлоридов доза добавки должна быть максимальной для того, что бы предотвратить развитие активной точечной коррозии. Рекомендуемая дозировка добавки – 2-3% от массы цемента.
Нитрит-нитрат натрия ННК. Смесь нитрита и нитрат кальция в соотно-шении по массе 1:1 в виде водного раствора или пасты. Не допускается смешива-ние с растворами ЛСТ. Рекомендуемая дозировка – 2-4% от массы цемента.
Тетраборат натрия ТБН. Бесцветные кристаллы, хорошо растворимые в воде и глицерине. Рекомендуемая дозировка -0,2-3% от массы цемента.
Бихромат натрия БХН. Красные кристаллы, хорошо растворимые в воде, но нерастворимые в органических растворителях. Рекомендуемая дозировка – 0,5% от массы цемента.
Бихромат калия БХК. Оранжево-красные кристаллы, хорошо раствори-мые в воде. Дозировка -0,5% от массы цемента.
Катапин-ингибитор КИ-1. Прозрачная гелеобразная слегка мутная жид-кость от желтого до коричневого цвета, представляющая собой солянокислый раствор катапина и уротрапина. Допускается наличие осадка растворимого при нагревании. Хорошо смешивается с водными растворами солей. Эффективность добавки увеличивается при использовании низкоалюминатных цементов. Требует мягких режимов тепловой обработки бетона. Рекомендуемая дозировка -0,025-0,15% массы цемента (в расчете на сухое вещество).
Механизм действия добавок ингибиторов коррозии стали заключается в том, что в их присутствии происходит быстрое окисление растворимого оксида двухвалентного железа с образованием на поверхности стали пассивирующих за-щитных пленок из гидроксида железа. Постепенно из области действия коррозии исключаются новые участки поверхности стали, и процесс коррозии прекращает-ся. Эффективное замедление обеспечивается только при достаточном количестве добавки, отвечающем необходимому для данной системы отношению ингиби-тор:хлорид (сульфат).
Применение добавок-ингибиторов коррозии стали оказывает влияние на свойства бетонной смеси и бетона, что выражается в увеличении подвижности бе-тонной смеси, снижении диффузионной проницаемости бетона, увеличение элек-тропроводности бетона. Введение добавок-ингибиторов позволяет твердеть бетону при отрицательных температурах.
Прочность бетонов с добавкой ингибиторов коррозии стали изменяется по-разному. Для бетонов и растворов, содержащих НН, через 28 суток отмечается падение прочности на сжатие и растяжение, а бетона содержащие ННК, дают су-щественное увеличение прочности в раннем и более позднем возрасте. Нитрит натрия выщелачивается в течении двух лет, в то время как ННК, который раство-рим в меньшей степени, более эффективно замедляет коррозию. Ингибиторы на основе солей натрия могут увеличить защитный потенциал реакции заполнителя со щелочью, особенно если используются реакционноспособные заполнители.
Использование шлакопортландцементов и высокоалюминатных портланд-цементных для бетонов с добавками-ингибиторами обеспечивает более высокую коррозионную стойкость стали, чем у бетонов на бездобавочных портландцементах.

Читайте также  Виды и назначение дорожной сетки

Провод для прогрева бетона — принцип действия, виды, укладка и монтаж

При строительстве монолитных бетонных конструкций в зимнее время применяется несколько технологий для создания необходимых температурных условий. Это может быть установка специальных тепляков, применение тепломатов или специального провода для прогрева бетона. Первый способ наиболее энергоемкий, поэтому экономически невыгоден, второй вариант подразумевает установку тепловых станций, прогревающих только верхние слои, что также вносит ряд ограничений на применение. Последний вариант наиболее востребован, о нем и пойдет речь в данной публикации.

Зачем нужен прогрев бетона?

В холодное время года, когда температура окружающего воздуха опускается ниже точки замерзания воды, возникают проблемы с гидратацией бетонного раствора. Проще говоря, смесь частично замерзает, а не полностью затвердевает. После повешения температуры окружающей среды начинается процесс оттаивания, монолитность смеси может быть нарушена, что отрицательно отразится на монолитности конструкции, ее сопротивлению проникновения воды, что приведет к снижению долговечности.

Последствия заливки раствора на морозе, в этом случае не поможет даже гидрошпонка Аквабарьер или другая гидроизоляция

Чтобы избежать перечисленных последствий, обязательно необходимо зимой делать электропрогрев бетонной смеси. При этом изотермическом процесс не возникает нарушений в ее структуре, что положительно отражается на прочности возводимой конструкции.

Виды нагревательных проводов и кабелей

Чаще всего для электроподогрева бетона применяются провода ПНСВ. Это объясняется его относительно невысокой стоимостью и простым монтажом. Ниже представлен внешний вид термопровода, его конструктивные особенности и расшифровка маркировки.

Внешний вид провода ПНСВ (А), расшифровка маркировки (В) и конструкция (С)

В качестве альтернативы может применяться аналог – ПНСП, основное отличие которого заключается в изоляции, она выполнена из полипропилена, что позволяет незначительно повысить максимальную мощность тепловыделения.

Таблица основных параметров проводов ПНСВ и ПНСП

Обратим внимание, что провода данного типа могут использоваться в качестве напольных обогревателей, которые работают по принципу теплого пола.

Основная трудность, связанная с применением термопроводово данного типа, заключается в необходимости произвести расчет их длины. Небольшие просчеты можно исправить регулируя уровень напряжения, поступающего с прогревочного трансформатора.

Подробно о том, как производится монтаж ПНСВ, а также описание связанных с этим процедур (расчет длины проводов, схема укладки, составление технологической карты и т.д.) будет приведено в другом разделе.

Разновидности и особенности кабелей КДБС и ВЕТ

Основной недостаток описанных выше термопроводов – необходимость дополнительного оборудования, позволяющего регулировать мощность тепловыделения путем изменения напряжения. Значительно упростить задачу можно применяя двужильные секционные саморегулирующие термокабели, а именно финский ВЕТ или отечественный КДБС. Они не требуют для подогрева дополнительного оборудования и подключаются напрямую к сети 220 вольт. Устройство прогревочного кабеля представлено ниже.

Основные элементы конструкции кабеля обогревочного

Обозначение:

  • А – Выходы нагревательных жил.
  • В – Установочный кабель, служащий для подключения КДБС к сети 220в, для этой цели можно использовать любой соединительный провод, например АПВ.
  • С – Муфта, для подключения нагревательной секции.
  • D – Концевая изоляторная муфта.
  • Е – Нагревательная секция фиксированной длины.

Конструктивно кабель ВЕТ практически не отличается от рассмотренного выше отечественного аналога, что касается основных технических характеристик, то они приведены в сравнительной таблице ниже.

Таблица сравнительных характеристик кабелей ВЕТ и КДБС

Что касается маркировки, то отечественные изделия данного типа кодируются в следующем виде: ХХКДБС YY, где ХХ – характеристика линейной мощности, а YY – длина секции. В качестве примера можно привести маркировку 40КДБС 10, которая указывает мощность 40 Вт на метр, а сама секция десятиметровой длины.

Технология прогрева с использованием ПНСВ

Принцип действия довольно простой: при подаче напряжения происходит нагрев провода, который в свою очередь нагревает бетонную смесь. Поскольку для нагрева рекомендуется ограничится напряжением 70 В, потребуется понижающий трансформатор (далее ПТ) соответствующей мощности.

Трансформаторная подстанция КТПТО 80 для работы с термопроводом

Перед тем, как осуществлять монтаж, необходимо рассчитать длину прогревочного провода. При этом необходимо принимать во внимание его тип и характеристики, напряжение трансформаторной подстанции, объема бетонной смеси, температуры окружающей среды, а также характер конструкции (предполагается заливка колоны, балки) и т.д. Чтобы не запутаться в расчетах, можно воспользоваться онлайн калькулятором для расчета нагревательного проводника ПНСВ или другого кабеля (ПНБС, ПТПЖ и т.д.).

Для нагрева бетонной смеси, объемом один кубометр необходимо около 1200-1300 Вт. Если мы будем использовать провод данной марки сечением 1,20 мм, то потребуется прогревочник 30-45 м (для точного расчета длины необходимо знать температурные условия).

Помимо этого необходимо учитывать силу тока, для нормальной работы погруженного в раствор кабеля допустимо 14,0 – 18,0 Ампер (в зависимости от схемы подключения).

Электрическая схема подключения ПНСВ А) звездой В) треугольником

Монтаж ПНСВ

Приведем краткое руководство стандартной методики:

  1. Выбираем диаметр провода согласно техкарте, как правило это 1,20-4,0 мм. Если планируется обогрев армированных конструкций, то рекомендуется остановиться на ПВХ изоляции, поскольку она более прочная. Для неармированных конструкций допускается применять провод с полипропиленовым покрытием.
  2. Нарезка производится сегментами равной длины, после чего их сворачивают спиралью (Ø 30,0-45,0 мм).
  3. Укладка спиральных ниток производится в арматурный каркас или их располагают в фанерном или деревянном каркасе (опалубке).
  4. Характеристики ПНСВ не предполагают его работу в качестве обогревателя за пределами бетонной смеси. При таких условиях он сразу выходит из строя. Для исправления ситуации используется любой монтажный провод большего сечения, который подключают к выводам сегмента. Пример как подключить ПНСВ с помощью холодных концов
  5. После того, как опалубку зальют бетонной смесью, дожидаются, пока она начнет схватываться, после чего производится включение трансформаторной подстанции. С ее помощью осуществляют установку необходимой температуры путем увеличения или уменьшения напряжения.

Обратим внимание, принцип и схема укладки ПНСП, ПНБС, ПТПЖ практически не отличается от ПНСВ.

Использование сварочного аппарата в качестве ПТ.

Такой способ подогрева вполне возможен, приведем пример как это можно реализовать такой метод. Допустим, нам необходимо залить плиту объемом 3,7 кубических метра, при температуре на улице – 10°С. Для этой цели потребуется сварочная установка на 200,0-250ампер, клещи для измерения тока, провод ПНСВ, холодные концы и тканевая изоляционная лента.

Нарезаем восемь сегментов по 18,0 метров, каждый такой может выдержать ток до 25,0 А. Мы оставим небольшой запас и возьмем для подключения к сварочному аппарату на 250,0 А восемь таких сегментов.

К каждому выходу отрезка подсоединяем на скрутке монтажный провод (подключаем холодные концы). Производим укладку ПНСВ, ее схема будет приведена ниже. Соединение холодных концов (плюс и минус отдельно) желательно делать при помощи клеммника, размещенном на текстолите или любом другом изоляционном материале.

Подключение ПНСВ к сварочному аппарату

Завершив заливку, подключаем прямой и обратный выход аппарата (полярность не имеет значения), предварительно выставив ток на минимум. Проводим измерение тока нагрузки на отрезках, он должен быть порядка 20,0 А. В процессе нагрева сила тока может немного «проседать», когда это происходит, увеличиваем ее на сварке.

Плюсы и минусы ПНСВ

Прогревать таким способом бетон довольно выгодно. Это объясняется как низкой стоимостью провода и относительно небольшим расходом электричества. Отдельно необходимо отметить устойчивость проволоки к щелочному и кислотному воздействию, что позволяет использовать данный способ при добавлении в смесь различных присадок.

Основные недостатки:

  • сложность расчетов при расчете длины провода;
  • необходимость использования ПТ.

Понижающие станции стоят довольно дорого, а учитывая длительность процесса брать их в аренду не выгодно (такие услуги обходятся в 10% от себестоимости изделия). Использование сварочных аппаратов делает возможным обогрев небольших конструкций, но поскольку она не рассчитана на такой режим работы, выход ее из строя и последующий дорогостоящий ремонт довольно вероятны.

Монтаж секционного обогревочного кабеля

Поскольку такие нагреватели для бетона поставляются не в бухтах, а готовыми секциями, снимается вопрос с обрезкой. Все что необходимо для сбора установки для зимнего бетонирования это рассчитать мощность сегмента исходя из того сколько кубов бетона в конструкции, после чего выбрать кабель соответствующей длины.

Начнем с краткого руководства по расчетам и небольших рекомендаций по монтажу:

  • В инструкции к технологии ТМО бетона указывается, что на обогрев кубометра смеси требуется от 500 до 1500 Вт (зависит от температуру воздуха). Расход электроэнергии можно существенно снизить, если применить несколько несложных технических приемов:
  1. Использовать специальные присадки для смеси, позволяющие понизить точку замерзания раствора.
  2. Утеплить опалубку.
  • Если производится заливка балки или перекрытия, расчет обогревочного кабеля производится из 4 погонных метров на 1 м 2 площади поверхности. При возведении объемных элементов, таких как двутавровые бетонные балки, электрообогрев укладывают ярусами, с расстоянием между ними не более 40,0 см.
  • Защита кабеля позволяет приматывать его к арматуре.
  • Расстояние от поверхности конструкции до уложенного внутри электрообогревателя должно быть как минимум 20,0 см.
  • Чтобы бетонная смесь прогревалась равномерно, нагреватели должны быть уложены на одинаковом расстоянии.
  • Между разными контурами должно быть не менее 40,0 мм.
  • Запрещено пересечение греющих проводников.

Преимущества и особенности сегментированного кабеля

К несомненным положительным качествам продукции данного типа следует отнести:

  • Для организации прогрева бетона при помощи не требуется наличие дорогостоящего дополнительного оборудования (ПТ).
  • В отличие от сушки электродами вероятность поражения электричеством минимальна.
  • Легкий монтаж и несложный расчет длины сегмента.

Особенности:

ВЕТ кабель стоит существенно дороже, чем провод для прогрева бетона ПНСВ. Отечественный КДБС, например производимый компанией ЭТМ в Красноярске, несколько улучшает положение, но не намного. Именно поэтому данные кабели применяются при возведении небольших бетонных и ЖБТ конструкций.

В качестве заключения.

Мы описали только один способ обогрева бетона, на самом деле их значительно больше. Они будут рассмотрены в других публикациях.

В завершении считаем необходимым ответить на вопрос, неоднократно встречающийся в сети, почему нельзя для прогрева бетона использовать нихромовые провода. Во-первых, это удовольствие было бы очень дорогим, во-вторых, правилами техники безопасности запрещено. Именно поэтому не стоит калькулятор для расчета числа витков нихрома, чтобы сделать обогрев трубы или бетона.

Зимнее бетонирование с применением нагревательных проводов

МЕТОДИЧЕСКАЯ ДОКУМЕНТАЦИЯ В СТРОИТЕЛЬСТВЕ

ЗИМНЕЕ БЕТОНИРОВАНИЕ С ПРИМЕНЕНИЕМ НАГРЕВАТЕЛЬНЫХ ПРОВОДОВ

В настоящем методическом документе содержатся сведения о зимнем бетонировании с применением нагревательных проводов: технические требования к нагревательным проводам и силовому электрооборудованию, методические положения по расчету и выбору параметров режима термообработки бетона, рекомендации по организации работ, правила и приемы выполнения технологических операций, нормы и процедуры оценки качества работ. Приводятся примеры бетонирования типовых конструктивных элементов здания: колонн, стен и перекрытий.

Сведения, содержащиеся в документе, могут быть использованы для составления технологических документов на зимнее бетонирование: проектов производства работ, технологических карт, технических регламентов и.т.п.

Методический документ предназначен для проектных и строительных организаций и специалистов-строителей, занимающихся вопросами производства бетонных работ в зимних условиях.

Методический документ разработан сотрудниками ЗАО «ЦНИИОМТП» — кандидатами техн. наук В.П.Володиным и Ю.А.Корытовым.

ВВЕДЕНИЕ

К зимнему бетонированию относятся работы, выполняемые при среднесуточной температуре наружного воздуха ниже 5 °С и минимальной суточной температуре ниже 0 °С. Считается, что зимнее бетонирование может производиться при температуре воздуха до минус 40 °С. На практике зимнее бетонирование освоено до температуры минус 15-20 °С.

Для набора бетоном необходимой прочности выполняют специальные мероприятия по подготовке и производству бетонных работ в зимнее время.

Для зимнего бетонирования применяют специальные бетоны с химическими противоморозными и пластифицирующими добавками.

При выполнении работ прогревают свежеуложенный бетон различными способами с применением водяного пара, нагретой воды или электроэнергии.

Свежеуложенный бетон предохраняют от потерь теплоты (метод термоса), укрывая различными утеплителями (матами, покрывалами, полотнищами).

Особые мероприятия, в частности по утеплению рабочих органов и бетоноводов, осуществляют при подготовке машин и технологического оборудования к зимнему бетонированию.

Основное требование при выполнении зимнего бетонирования заключается в создании благоприятных условий для приобретения бетоном в короткий срок необходимой проектной прочности.

Массивные монолитные конструкции (фундаментные плиты и блоки) с модулем поверхности охлаждения от 2 до 4 бетонируют способом термоса с применением быстротвердеющих цементов, ускорителей твердения и противоморозных и пластифицирующих добавок.

Конструкции (колонны, блоки, стены) с модулем поверхности охлаждения 4-6 бетонируют способом термоса с применением предварительного подогрева бетонной смеси, нагревательных проводов и греющей опалубки.

Относительно тонкостенные конструкции (перегородки, перекрытия, стены) с модулем поверхности охлаждения 6-12 бетонируют упомянутыми выше способами с применением нагревательных проводов, термоактивных гибких покрытий (ТАГП), греющих плоских элементов (ГЭП).

В данном документе рассматривается способ зимнего бетонирования с применением нагревательных проводов. Этот способ имеет ряд преимуществ по сравнению с нагревом водяным паром, горячей водой, инфракрасным облучением. Эффективность способа повышается в сочетании с другими упомянутыми выше мероприятиями и приемами зимнего бетонирования: использованием высококлассного бетона с химическими добавками, утеплителей, подготовкой машин и технологического оборудования.

Применение нагревательных проводов позволяет возводить здания и сооружения, не отличающиеся по своей прочности от возводимых в летний период.

Настоящий документ содержит методические рекомендации и примеры, которые позволяют подбирать способы работ (режимы, приемы) и материалы для зимнего бетонирования для конкретного объекта строительства, с учетом местных условий и особенностей строительной организации. Выбор способа работ и материалов производится на стадии разработки проекта производства работ (технологических карт), согласовывается с заказчиком и утверждается в установленном порядке.

Настоящий документ необходим не только для разработки упомянутой выше технологической документации, но может быть полезен при лицензировании строительной организации (фирмы) на производство данного вида работ, при сертификации системы управления качеством, при аттестации качества зимнего бетонирования.

В основу документа положены научно-исследовательские работы, выполненные в ЦНИИОМТП и в других институтах строительной отрасли, а также обобщение опыта зимнего бетонирования российских строительных организаций.

При разработке документа использованы нормативные и методические документы, основные из которых приведены в разделе 2.

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Документ распространяется на зимнее бетонирование с применением нагревательных проводов монолитных железобетонных строительных конструкций (плит, стен, перекрытий, колонн и т.п.), имеющих модуль поверхности охлаждения 4-10, при строительстве и ремонте жилых, общественных и производственных зданий и сооружений.

Зимнее бетонирование с применением нагревательных проводов производится при температуре окружающего воздуха, как правило, до минус 20 °С.

Документ используется для разработки проектов производства работ (технологических карт), при сертификации монолитных железобетонных конструкций и лицензировании организаций, выполняющих зимнее бетонирование.

Применение документа способствует обеспечению проектной прочности монолитных железобетонных конструкций, возводимых в зимних условиях.

2 НОРМАТИВНЫЕ И МЕТОДИЧЕСКИЕ ДОКУМЕНТЫ

СНиП 3.03.01-87. Несущие и ограждающие конструкции.

СНиП 12-03-2001. Безопасность труда в строительстве. Часть 1. Общие требования.

СНиП 12-04-2002. Безопасность труда в строительстве. Часть 2. Строительное производство.

ГОСТ Р 12.4.026-2001. ССБТ. Цвета сигнальные, знаки безопасности и разметка сигнальная. Назначение и правила применения. Общие технические требования и характеристики. Методы испытаний.

ГОСТ 12.4.059-89. ССБТ. Строительство. Ограждения защитные инвентарные. Общие технические условия.

ГОСТ 23407-78. Ограждения инвентарные строительных площадок и участков производства строительно-монтажных работ. Технические условия.

ГОСТ Р 52085-2003. Опалубка. Общие технические условия.

Руководство по производству бетонных работ в зимних условиях, районах Дальнего Востока, Сибири и Крайнего Севера* /ЦНИИОМТП Госстроя СССР. — М.: Стройиздат, 1982.

3 ОБЩИЕ ПОЛОЖЕНИЯ

3.1 Нагрев бетона осуществляется теплотой, выделяемой электрическими проводами с высоким омическим сопротивлением при подключении их в сеть. Нагревательные провода могут быть заложены непосредственно в массив монолитной железобетонной конструкции для нагрева ее изнутри.

Нагревательные провода укладывают также перед арматурными и опалубочными работами в песчаный слой или в бетонную подготовку для предотвращения замерзания грунтового основания при бетонировании фундаментов.

3.2 Нагревательные провода закладывают так, чтобы не нанести механических повреждений их изоляции и не вызвать тем самым короткого замыкания токонесущей жилы с арматурой, со стальной опалубкой или с другими металлическими деталями, что может произойти в процессах опалубочных и арматурных работ, а также укладки бетонной смеси.

Контактные соединения проводов выполняют плотными, искрение в контактах не допускается.

3.3 Нагревательные провода подключают к сети после полной проектной заливки в опалубку бетонной смеси. Рекомендуется предусматривать подключение к сети проводов, как правило, в ночное время с целью сокращения расходов, допуская перерывы до 7 ч в их электропитании в дневное время. Длительность перерывов зависит от теплоаккумуляторных свойств бетона, массивности конструкции, толщины утеплителя, температуры воздуха и устанавливается опытным путем с помощью строительной лаборатории.

Питание нагревательных проводов осуществляется от электрической сети 220 В (при условии заземления арматуры) или от автономных источников питания, например, дизель-генераторов.

3.4 Режим термообработки бетона определяется, как правило, при следующих ограничениях.

Разность между температурами воздуха и нагретого бетона принимается до 50-60 °С и не более 95 °С.

Скорость нагревания бетона для конструкций с модулем поверхности охлаждения 4-6 и 7-10 должна быть не более, соответственно, 6 и 10 °С/ч.

Время изотермического выдерживания бетона принимается до нескольких суток.

Скорость остывания для конструкций с модулем поверхности охлаждения 4-6 и 7-10 должна быть не более, соответственно, 3 и 5 °С/ч.

Разность температуры наружного слоя бетона с коэффициентом армирования около 3% и воздуха при распалубке для конструкций с модулем поверхности охлаждения 4 и 5 должна быть не более, соответственно, 30 и 40 °С.

3.5 Режимы нагревания, изотермической выдержки и остывания бетона поддерживают автоматически путем использования датчиков температуры, встраиваемых в бетон, и автоматического устройства, подключаемого к силовому оборудованию. Автоматизация процесса позволяет оптимизировать режим термообработки бетона и повысить качество бетонирования, способствует, кроме того, экономии электроэнергии до 25%.

3.6 Опалубка и арматура должны быть очищены от снега и наледи, например, продувкой из шланга горячим воздухом.

Уложенные (намотанные на арматуру) нагревательные провода также следует предохранять от снега и наледи. Из-за таяния снега и наледи в процессе нагрева бетона увеличивается водосодержание, могут возникнуть каверны, свищи, полости в бетоне, что недопустимо.

3.7 Термообработка бетона для конструкций внутри зданий и подземных фундаментов под оборудование без динамических нагрузок производится до тех пор, пока бетон не наберет прочность:

— без противоморозных добавок — не менее 5 МПа;

— с противоморозными добавками — не менее 20% проектной прочности.

Термообработка бетона без противоморозных добавок для других конструкций зависит от класса бетона и производится до набора бетоном прочности, приведенной в таблице 1.

Прочность бетона, % проектной, в конструкциях

подверженных атмосферному воздействию

переменно замерзающих и оттаивающих в водонасыщенном состоянии

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector