Порошковый металл и сферы его применения

Порошковый металл и сферы его применения

Порошковый металл и сферы его применения

Порошковая металлургия

Из металлов и различных сплавов могут производиться порошковые составы. Они могут применяться самым различным образом для защиты заготовок и деталей. Порошковая металлургия – активно развивающаяся область, которая имеет огромное количество особенностей. Это направление металлургии появилось более ста лет назад.

Получение порошков

Для производства порошка могут применяться самые различные технологии, но их объединяют следующие моменты:

  1. Экономичность. В качестве сырья могут использоваться отходы металлургической промышленности. Примером назовем окалину, которая сегодня нигде не применяется. Кроме этого, могут применять и другие отходы.
  2. Высокая точность геометрических форм. Изделия, получаемые при применении рассматриваемой технологии порошковой металлургии, обладают точными геометрическими формами, последующая механическая обработка не требуется. Этот момент определяет относительно небольшое количество отходов.
  3. Высокая износостойкость поверхности. За счет мелкозернистой структуры получаемые изделия обладают повышенной твердостью и прочностью.
  4. Невысокая сложность технологий порошковой металлургии.

Рассматривая наиболее распространенные технологии порошковой металлургии отметим, что они делятся на две основные группы:

  1. Физико-механические методы заключаются в измельчении сырья, за счет чего размер частиц становится небольшим. Подобного рода процессы производства характеризуются комбинированием различной нагрузки, которая оказывает воздействие на сырье.
  2. Химико-металлургические методы используются для изменения фазового состояния применяемого сырья. Примером подобного производства можно назвать восстановление солей и окислов, а также других соединений металлов.

Кроме этого, выделим следующие особенности производства порошка:

  1. Шаровой способ предусматривает переработку металлических обрезков в шаровой мельнице. За счет тщательного дробления получается мелкозернистый порошок.
  2. Вихревой способ заключается в применении специальной мельницы, которая создает сильный воздушный поток. Столкновение крупных частиц становится причиной получения мелкого порошка.
  3. Применение дробилок. Нагрузка, которая создается при падении груза большой массы, приводит к измельчению материала. Ударная нагрузка воздействует с определенной периодичностью, за счет чего и происходит дробление состава.
  4. Распыление сырья в жидком виде под воздействием сжатого воздуха. После получения хрупкого состава, металл пропускается через специальное оборудование, которое перемалывает его для получения порошка.
  5. Электролиз – процесс восстановления металла из жидкого состава под воздействием электрического тока. За счет повышения показателя хрупкости сырье может быстро перемалываться в специальных дробилках. Данный метод обработки позволяет получить зерно дендритной формы.

Некоторые из приведенных выше технологий порошковой металлургии получили большое распространение в промышленности по причине высокой производительности и эффективности, другие сегодня практически не применяются из-за повышения стоимости получаемого сырья.

Компактирование

Порошковая металлургия также предусматривает проведение процедуры, которая основана на получении полуфабрикатов в виде прутков и лент. После прессования можно получить практически готовое к применению изделие.

К особенностям процесса компактирования можно отнести нижеприведенные моменты:

  1. В качестве сырья при проведении рассматриваемого процесса применяется сыпучее вещество.
  2. После прохождения компактирования сыпучий порошок становится компактным материалом с пористой структурой. Прочность получаемого изделия приобретается в ходе проведения других процессов обработки.

Принцип порошковой металлургии

Рассматривая процесс прессования порошка, отметим применение следующих технологий:

  1. прокатывание;
  2. шликерное литье;
  3. изостатическое прессование за счет оказания давления газом или жидкостью;
  4. прессование с одной или обеих сторон при применении специальных металлических матриц;
  5. инжекционный метод.

Для того чтобы ускорить процесс компактирования, изделия порошок подвергается воздействию высокой температуры. В большинстве случаев расстояние между отдельными частицами уменьшается за счет воздействия высокого давления. Большой прочностью обладают порошки, изготавливаемые из мягких металлов.

Спекание

Финальный этап в порошковой металлургии заключается в воздействии высокой температуры. Практически любой метод порошковой металлургии предусматривает воздействие высокой температуры. Проводится спекание для достижения следующих целей:

  1. для повышения плотности изделия;
  2. для придания определенных физико-механических качеств.

Для термического воздействия проводится установка специального оборудования. Защитная среда, как правило, представлена инертными газами, к примеру, водородом. Процесс спекания может проводится и в вакууме для повышения эффективности применяемой технологии.

Индукционный метод нагрева также пользуется большой популярностью. Он предусматривает использование индукционных печей, которые производят или изготавливают своими руками. В продаже встречается оборудование, способное объединять несколько технологических процессов: спекание и прессование.

Применение продуктов порошковой металлургии

Порошковую металлургию применяют в авиации, электротехнике, радиотехнике и многих других отраслях промышленности. Это связано с тем, что применяемая технология производства позволяет получать детали сложной формы. Кроме этого, современные технологии порошковой металлургии позволяют получить детали, обладающие:

  1. Высокой прочностью. Плотная структура определяет повышенную прочность.
  2. Долговечностью. Получаемые изделия могут прослужить в тяжелых условиях эксплуатации на протяжении длительного периода.
  3. Износостойкостью. Если нужно получить поверхность, которая не истирается под механическим воздействием, то нужно рассмотреть технологию порошковой формовки.
  4. Пластичностью. Можно также получить заготовки повышенной пластичности.

Продукция порошковой металлургии

Также распространение этой технологии можно связать с низкой себестоимостью получаемых изделий.

Достоинства и недостатки
Метод получения изделий из порошков получил достаточно широкое распространение по причине большого количества достоинств:

  1. низкая стоимость получаемых изделий;
  2. возможность производства крупных деталей со сложными поверхностями;
  3. высокие физико-механические качества.

Металлургический порошковый метод характеризуется и несколькими недостатками:

  1. Получаемая структура обладает относительно невысокой прочностью.
  2. Структура характеризуется меньшей плотностью.
  3. Рассматриваемые технологии предусматривают применение специализированного оборудования.
  4. При нарушении технологии производства детали имеют низкое качество.

Сегодня порошковая металлургия активно применяется в самых различных отраслях промышленности. Кроме этого, ведутся разработки, которые направлены на улучшение качества получаемых изделий.

В заключение отметим, что при соединении мелких частиц различных металлов и сплавов получаются материалы с особыми эксплуатационными качествами.

Все о порошковых сталях

  1. Что это такое и как появилась сталь?
  2. Особенности производства
  3. Плюсы и минусы
  4. Характеристики и свойства
  5. Виды
  6. Обработка
  7. Сварка, заточка и ковка
  8. Сферы применения

Порошковая сталь – термин часто встречается в описании ножей и других популярных изделий из данного металла. Стоит рассмотреть основные особенности материала, его сферы применения, а также разобрать способы изготовления.

Что это такое и как появилась сталь?

Первые отметки об использовании порошковой стали появились ещё в конце VIII века нашей эры. С помощью данного материала индусы сделали колонну весом почти 6 тонн. Интересно, что конструкция до сих пор практически в идеальном состоянии.

К сожалению, широкое применение порошковая сталь нашла только в середине XX века, когда промышленные мощности США стали применять данный материал, желая увеличить прочность производимых изделий.

Особенности производства

Порошковую сталь используют преимущественно для изготовления ножей. При этом производители задействуют разные сплавы, в составе которых присутствуют дополнительные компоненты. Перечислим основные легирующие добавки.

  • Молибден. Отличается устойчивостью к высоким нагрузкам и нагреванию. Ножи из порошковой стали с молибденом прослужат долго и порадуют своим качеством исполнения. В среднем в сплаве содержится до 8% дополнительного компонента.
  • Хром. Повышает устойчивость стали к коррозии и делает ее более твердой. Минус – снижение прочности материала. Среди особенностей выделяют отсутствие необходимости регулярной заточки ножей. В среднем сплав содержит до 13% хрома в своем составе.
  • Ванадий. Повышает устойчивость стали к внешним воздействиям, делает более твердой.
  • Никель. Улучшает твердость материал, делает его более устойчивым к воздействиям извне.
  • Марганец. Улучшает структуру сплава, за счет чего повышается его износостойкость. Материал становится более прочным, поэтому часто для производства ножей используют разновидности с содержанием марганца.
  • Кремний. Улучшает крепость ножа, повышая также остальные характеристики.

Еще на свойства ножевой стали при производстве влияют карбиды. Особые элементы, от которых напрямую зависят прочность готового изделия, а также гибкость и срок службы. В обычной стали карбиды отличаются крупными размерами, поэтому распределяются по материалу неравномерно. Минус в том, что такое поведение частиц не позволяет предсказать, каким в итоге получится материал. При изготовлении сплава из порошка этого удается избежать, что позволяет сохранить высокие показатели прочности и надежности готового сырья.

Процесс изготовления стали из порошка проводится в несколько этапов.

  • Сталь распыляют в виде порошка, за счет чего частицы карбида становятся похожи на слитки и предоставляют возможность быстрого охлаждения.
  • Далее распыленный состав прессуют под высоким давлением с единовременной обработкой материала.
  • Третий этап подразумевает сплавление твердофазного и двухфазного видов. На данной стадии в сталь добавляют легирующие компоненты, с помощью которых повышают свойства материала.

Последний этап представляет выпуск прочного материала, способного выдержать внушительные нагрузки.

5 особенностей металлических порошков для 3D-печати

Одно из важных преимуществ технологии 3D-печати металлами – возможность создать изделие из практически любого сплава. Помимо стандартных металлов существует широкая номенклатура специальных сплавов – уникальных высокотехнологичных материалов, которые производятся под определенные задачи заказчика.

Наиболее прогрессивная и популярная из технологий 3D-печати металлами – селективное лазерное плавление (SLM/DMP). Она заключается в последовательном послойном сплавлении металлических порошков при помощи мощного излучения иттербиевого лазера.

Технология запатентована лидерами 3D-индустрии – компаниями SLM Solutions и 3D Systems. Металлические 3D-принтеры этих производителей, в зависимости от функциональных возможностей и решаемых задач, могут быть задействованы и как производственные машины для серийного изготовления, и как лабораторные установки с гибкими настройками и возможностью быстрой смены материалов для 3D-печати.

Оборудование:
SLM Solutions (SLM-технология): SLM 125, SLM 280, SLM 500, SLM 800;
3D Systems (DMP-технология): ProX DMP 100, ProX DMP 200, ProX DMP 300, ProX DMP 320, DMP 8500.

Основные преимущества 3D-печати металлами:

  • высокие показатели плотности: в 1,5 раза выше, чем при литье;
  • возможность создания миниатюрных и геометрически сложных объектов и других неповторимых форм в виде закрытых бионических структур;
  • широкий выбор металлических сплавов, как стандартных, так и специальных;
  • сокращение циклов производства и ускорение выхода готовой продукции.

Сферы применения:

  • авиакосмическая индустрия;
  • машиностроение;
  • автомобилестроение;
  • нефтегазовая отрасль;
  • электроника;
  • медицина;
  • пищевая промышленность;
  • исследования и экспериментальные работы в конструкторских бюро, научных и учебных центрах.

Виды металлов, применяемых в аддитивном производстве

Современные аддитивные технологии предполагают использование около двадцати протестированных и готовых к эксплуатации материалов, в их числе – инструментальные, нержавеющие, жароупорные сплавы, алюминиевые и титановые сплавы, медицинские кобальт-хром и титан.

Поскольку металлов очень много, и каждый из них обладает определенными свойствами, один металл можно заменить другим исходя из технологических задач. К примеру, если в технологической цепочке необходимо задействовать титановый сплав, то технолог сможет выбрать один из множества титановых сплавов с теми свойствами, которые нужны для производства конкретного изделия.

  • Нержавеющие сплавы: 17-4PH, AISI 410, AISI 304L, AISI 316L, AISI 904L
    В эту категорию входят сложнолегированные стали с содержанием хрома (не менее 12%). Оксид хрома образует на поверхности металла коррозионностойкую пленку, которая может разрушаться под воздействием механических повреждений или химических сред, но восстанавливается в результате реакции с кислородом. Нержавеющие сплавы применяются при производстве клапанов гидравлических прессов, арматуры крекинг-установок, пружин, сварной аппаратуры, работающей в агрессивных средах, и изделий, используемых при высоких температурах (+550…800°C).
  • Инструментальные сплавы: 1.2343, 1.2367, 1.2709
    Основное предназначение инструментальных сплавов – изготовление различных видов инструментов (режущих, измерительных, штамповых и др.), вкладок в пресс-формы при горячем деформировании конструкционных сталей и цветных сплавов на крупносерийном производстве, пресс-форм для литья под давлением сплавов алюминия, цинка и магния. Эти сплавы содержат как минимум 0,7% углерода и обладают повышенной твердостью, износостойкостью, вязкостью, теплопроводностью и прокаливаемостью.
  • Никелевые сплавы: Inconel 625, Inconel 718
    Никель обладает способностью растворять в себе многие другие металлы, сохраняя при этом пластичность, поэтому существует множество никелевых сплавов. Например, в соединении с хромом они широко применяются в авиационных двигателях, из них изготавливают рабочие и сопловые лопатки, диски ротора турбин, детали камеры сгорания и т.п. Наиболее жаропрочными являются литейные сложнолегированные сплавы на никелевой основе, которые выдерживают температуры до +1100°C в течение сотен и тысяч часов при высоких статических и динамических нагрузках.
  • Кобальт-хром: CoCr
    CoCr представляет собой высококачественный кобальт-хромовый сплав для модельного литья, соответствующий современным техническим требованиям. Благодаря отличным механическим свойствам он хорошо подходит для изготовления корпусов сложной геометрии в электронике, пищевом производстве, авиа-, ракето- и машиностроении, а также кламмерных протезов.
  • Цветные металлы: CuSn6
    CuSn6 – сплав из меди и 6% олова, который обладает высокими теплопроводящими свойствами и коррозионной стойкостью и идеален для создания уникальных систем охлаждения.
  • Алюминиевые сплавы: AlSi12
    Это наиболее дешевые из литейных сплавов. К их преимуществам относятся высокая коррозионная стойкость, жидкотекучесть, электро- и теплопроводность. В промышленности используются, как правило, для изготовления крупногабаритных тонкостенных отливок сложной формы.
  • Титановые сплавы: Ti6Al4V, Ti6Al7Nb
    Ti6Al4V – наиболее распространенный сплав титана с превосходными механическими свойствами. Считается самым прочным и жестким титановым сплавом, отличается особо высокой сложностью обработки. Имеет плотность 4500 кг/м³ и прочность на разрыв более 900 МПа. Сплав Ti6Al4V предоставляет неоспоримые преимущества в плане снижения веса изделий в таких отраслях, как аэрокосмическая промышленность, автомобилестроение и судостроение. Эти металлы применяются, в частности, при изготовлении вкладок в пресс-формы, турбинных лопаток, камер сгорания, а также изделий, предназначенных для работы при высоких температурах (до +1100°C).

Схемы установки SLM Solutions (вверху) и 3D Systems (внизу)

Особенности металлических порошков

Вопросы безопасности при работе на металлических 3D-принтерах

Как известно, металлы, попадающие в человеческий организм в микроскопических дозах, полезны. В макродозах они несут опасность для здоровья – получить отравление металлами очень легко, а кроме того, порошки взрывоопасны. При дисперсности порошка от 4 микрон он проникает сквозь поры кожи, органы дыхания, зрения и т.д. В связи с этим при работе на металлических 3D-принтерах необходимо строго соблюдать технику безопасности. Для этого предусмотрена защитная спецодежда – костюм, перчатки и обувь. Аддитивные машины, как правило, комплектуются пылесосом для удаления основного порошка, однако и после его использования некоторая взвесь металлов остается.

Производители стремятся улучшить условия безопасности, и сейчас наблюдается тенденция по созданию на аддитивном производстве так называемых закрытых циклов, т.е. полностью герметичных помещений, за пределы которого порошок не попадает. Оператор работает в специальной одежде, которая затем утилизируется.

Потенциал 3D-печати металлами

Итак, мы выяснили, что современные технологии позволяют получить порошок для 3D-печати металлом с определенными свойствами для решения конкретных производственных задач. А так как распылению можно подвергнуть практически любые металлы, то и номенклатура металлических материалов для 3D-принтеров чрезвычайно обширна.

Достижения металлургии в полной мере реализуются в аддитивном производстве, позволяя использовать уникальные сплавы для изготовления геометрически сложных изделий повышенной точности, плотности и повторяемости. В то же время, внедрение металлических аддитивных установок имеет и сдерживающие факторы, главный из которых – высокая стоимость порошков.

3D-печать металлами обладает серьезным потенциалом для повышения эффективности производства во многих отраслях промышленности и используется все большим числом компаний и исследовательских организаций. Пример для всемирной индустрии показывают такие промышленные лидеры, как General Electric, Airbus, Boeing, Michelin, которые уже перешли от изготовления единичных металлических изделий к серийному аддитивному производству.

Порошковая металлургия: история, нюансы производства, перспективы

Разнообразие изделий, изготовленных с помощью порошковой металлургии, охватывает: детали оборудования с антифрикционными свойствами и узлы приборостроения, конструкционные элементы, инструментальные заготовки в разных направлениях промышленности.

Преимущества металлических порошков

Востребованность отрасли обусловлена ее преимуществами над другими способами металлообработки:

  1. Минимизируются затраты средств и времени на финальную обработку продукции. Изделия точно соответствуют заданным формам и чертежным габаритам, отличаются качественной поверхностью.
  2. Удается создавать продукцию с необычными свойствами за счет объединения металлических компонентов с неметаллическими.
  3. Уменьшается число технологических операций, за счет чего экономятся ресурсы, энергия. Стартовое сырье используется на 97%.
  4. Готовые изделия характеризуются более высокими эксплуатационными, техническими характеристиками по сравнению с теми, которые изготовлены традиционными методами.
  5. Удается упростить производство изделий со сложной формой.

Экскурс в историю отрасли

Издавна порошковое серебро, золото и медь применяли в искусстве живописи, керамике. В процессе геологических исследований на территории Древнего Египта найдены железные орудия, в Дели – железный памятник. Изделия изготавливались кричной технологией: железную руду нагревали горнами при температуре в 1000 градусов, получали крицу (губчатый материал), затем проковывали неоднократно и в финале снижали количество пор нагревом. Доменное производство на время вычеркнуло порошковую металлургию из способов металлообработки.

Возвращением к порошковой металлургии мы обязаны русским ученым В.В. Любарскому и П.Г. Соболевскому. В 1826 г. учеными разработана методика прессования, заданного спекания порошка платины. С этого момента порошковая металлургия в виде отрасли науки получила новую жизнь. Важные моменты в истории развития отрасли:

  • 1924 г. — Т.М. Алексеенко-Сербин организует лабораторию по внедрению новых технологий обработки металлов в Москве на электроламповом заводе;
  • 1932 г. – получение порошкового электролитического железа и вольфрамового порошка в масштабных объемах на механическом заводе в Ленинграде;
  • 1953-1957 гг. – использование металлотермического восстановления для изготовления порошкообразных сложнолегированных сталей;
  • после 1957 г. – изготовление спеченных материалов на базе железа с пропиткой медью, заполнением пор материала стеклом, введением углерода.

Стандартная технология производства подразумевает 4 этапа: получение порошка из сырья, формование заготовок, последующее спекание, финишную обработку. Каждый этап влияет на свойства будущего изделия.

Производство порошковых металлов, свойства материалов

Способы получения из разного сырья металлических порошков многочисленны и разнообразны, что обуславливает вариации свойств изделий, финансовых показателей и качества. Выделяют 2 способа производства:

  1. Физико-механический (переработка сырья помолом, дроблением на фракции и грануляцией, направленным распылением, резкой). Химический состав не меняется.
  2. Химико-металлургический (сырье подвергается восстановлению окислами, а еще термической диссоциации и электролизу). Меняется агрегатное состояние сырья, химический состав.

Физико-механическое измельчение сырья

Под измельчением понимают разрушение твердых материалов под воздействием извне до частиц определенного размера. Измельчение осуществляют размолом и дроблением, истиранием.

Механическое измельчение выгодно применять в отношении кремния и марганца, сурьмы и хрома, а также других хрупких металлов. Если речь о меди и других вязких металлах, сырьем служит обрезка заготовок, стружка и другие отходы.

Воздействуют на сырье сжатием и ударными механизмами, срезают послойно. Последний способ – когда требуется тонкое измельчение. Грубое размельчение выполняют валковыми, щековыми, конусными дробилками. Финальный помол происходит в мельницах разных типов (вихревых и центробежных, вибрационных и др.).

В отношении жидких металлов применяется грануляция, распыление. Это доступный и нетрудоемкий способ создания порошкового железа, алюминия и свинца, а также цинка, меди и иных металлов, плавящихся в условиях нагрева до 1600 градусов. Воздействие заключается в дроблении расплавленной струи жидкостью, энергонасыщенным газом, целенаправленном распылении, а также в сливании расплава в воду или другую жидкость. В результате распыления получают частицы разных форм (капля, шар и др.).

Восстановление с помощью химико-металлургических методик

Восстановительный процесс из окислов заключается в объединении металла, имеющего неметаллические включения (хлорные, кислородные, солевые остатки), с восстановителем (водородом и газом, углем, кадмием и пр.).

Сырьем для выпуска кобальтового, никелевого и медного порошка становятся окиси, закиси металлов и окалина от проката. Процесс восстановления осуществляют в трубчатых и муфельных печах с участием специально подготовленного природного газа, диссоциированного аммиака и водорода. Этап занимает до 3 часов. Результат – губка, легко растираемая в порошок.

Электролиз отличается экономической выгодой в отношении получения чистого медного порошка. Суть метода заключается в разложении водного раствора / расплавленной соли металла под воздействием электрического тока. Результатом становится осевший на катодном элементе металл в виде частиц разных форм, габаритов. Размеры частичек зависят от наличия ПАВ и коллоидов, от плотности электротока.

Карбонильный процесс — формирование карбонила (соединения с окисью углерода) из сырья и последующее образование порошка в ходе нагрева и ожидаемого разложения карбонила. Так получают никелевые, железные, кобальтовые, вольфрамовые и прочие порошки.

Свойства порошков

Металлические порошки на этапах производства получают определенные химические и физические, а также технологические свойства.

Итоговые свойства варьируются от выбранной методики изготовления порошкообразного металла, химических компонентов сырья, используемого в производстве. Базовый металл в порошке остается на уровне 98-99%, остальное – примеси в изученном количестве. Исключением являются никелевые, железные, медные и другие металлические окислы, легко образующие в ходе нагрева атомы, которые улучшают спекаемость полученных порошков.

В металлических порошках есть азот, водород и другие газы, попавшие в сырье и адсорбированные с поверхности. В электролитических порошках присутствует водород, в карбонильных – примесь кислорода и двуокиси углерода, а в распыленных – газообразные вещества, участвующие в процессе производства. До прессования полученных на производстве порошков из них удаляют избыток газов вакуумированием, чтобы избежать растрескивания готовых изделий при спекании.

Физические свойства

Определяются формой, размерами, плотностью и другими характеристиками. Форма зависит от выбранного способа производства:

  • карбонильный – сферическая;
  • восстановительный – губчатая;
  • измельчение мельницей – осколочная;
  • вихревое дробление – тарельчатая;
  • электролиз – дендритная;
  • распыление – каплевидная.

Размеры частиц варьируются от долей мкм до десятых долей мм. Наиболее широкий диапазон встречается в порошках, сделанных с помощью электролиза, восстановления.

Плотность зависит от дефектов в кристаллической решетке, наличия примесей в закрытых порах. Определяется пикнометром.

Читайте также  Идеи для гардеробной своими руками фото

Микротвердость определяет способность частиц порошка к деформированию. Показатель зависит от наличия и характера примесей.

Технологические свойства

Определяются текучестью, формуемостью, насыпной плотностью и прессуемостью.

Текучесть указывает на скорость, с которой взятая условно единица объема заполнится порошком. От показателя зависит производительность в ходе прессования.

Прессуемостью называют способность приобретать конкретную плотность на этапе прессования, а формуемостью – возможность сохранять определенную форму.

Формование порошка из металла

Цель процесса – придать порошковым заготовкам планируемые размеры и форму, добиться нужной плотности и механической прочности. Формование охватывает несколько операций:

  1. Отжиг. Повышает пластичность и прессуемость.
  2. Классификация. Суть заключается в разделении порошков по габаритам частиц с помощью проволочных, протирочных сит и воздушных сепараторов.
  3. Создание смеси. Смешивают порошки от разных металлов до однородного состава в смесителях, с помощью шаровых мельниц.
  4. Дозирование. Отделение заданных объемов порошковой смеси. Бывает дозирование по весу и объему.
  5. Формование. Выполняется прессованием (изостатическим и мундштучным, а также динамическим и в прессформе), прокаткой, шпикерным формованием.

Дополнительные операции

Технология производства включает дополнительные операции, направленные на повышение точности и чистоты полученной поверхности, улучшение механических и физико-химических параметров. К дополнительным процессам относят пропитку с помощью жидких металлов и масла, механическую и химико-температурную обработку, нитроцементацию, диффузионное хромирование, калибрование.

Какие изделия выпускает порошковая металлургия

Металлокерамические материалы в ряде областей эффективно заменяют латунь, бризу и другие подшипниковые сплавы с антифрикционными характеристиками. Подшипники скольжения изготавливают из пористого железа и железографита, из бронзографита. Наличие пор позволяет образоваться прочной пленке, что снижает трение и продлевает срок службы деталей.

Фрикционные и антифрикционные, «потеющие» материалы и фильтры входят в группу пористых изделий. Применяются в роли фильтров, электродов. Если в щелочном аккумуляторе используют высокопористые пластины никеля, изделие имеет меньшую массу и размеры по сравнению со стандартным аккумулятором.

Фильтры из нержавейки, стойкие к коррозии, дешевле изделий из чистого никеля. Они нужны в очистке от примесей жидкого литья, а также мартеновского и доменного газа. Пористые материалы используются для защиты авиатранспорта от обледенения, создания местного нагрева и охлаждения перегретых механизмов.

Перспективы развития отрасли

Продукция, полученная с помощью методов порошковой металлургии, за счет своих структурных особенностей отличается термостойкостью, гораздо лучше относится к температурным колебаниям, напряжению. Развитие отрасли тормозится стоимостью порошков, особыми требованиями к среде спекания, сложностью в производстве крупногабаритных заготовок.

Актуальные достоинства и недостатки отрасли – временные факторы, зависящие от развития данной сферы и сопутствующих направлений промышленности. Со временем порошковая металлургия способна завоевать другие области или будет вытеснена. За счет развития плазменного, а также электроннолучевого и дугового плавления, наряду с электроимпульсным нагревом, удается достичь температурных условий, недоступных ранее. Это снизило роль порошковой металлургии в общем производстве. Одновременно технологии нивелировали недостатки технологии – сложности в получении предельно чистых металлов, выпуске особо крупных заготовок.

Развитие и дальнейшее внедрение порошковой металлургии нельзя недооценивать. Япония и США каждый год расширяют отрасль, вкладывая немалые средства. Производство порошковых металлов за 1964-1994 гг. в Японии возросло в 114 раз, в США – в 43,5 раза.

Российская порошковая металлургия представлена Краснопахарским и Уральским заводом, другими предприятиями. Даже в кризис предприятия выжили, расширили производство. Это доказывает пользу и востребованность отрасли. Глобальный прирост населения требует технологий, дающих значимый экономический эффект в условиях массового производства. Поэтому отрасль требует мощных усилий в развитии.

Про порошковую металлургию — достоинства и недостатки

Процесс порошковой металлургии является относительно новым и имеет ряд преимуществ по сравнению с процессом литья металла. Тем не менее, этот процесс не может полностью заменить функцию литья, имеет свои преимущества и недостатки.

Преимущества порошковой металлургии в том, что качество и эффективность полученного материала получается высокой. В результате процесса можно сделать результирующий материал у которого плотность и температура его плавления будут достаточно высоки.

Недостаток процесса порошковой металлургии заключается в ограниченности формы и точности, которые могли бы быть сделаны.

Порошок для сырья (частицы имеют размер от 0,01 до 500 мкм) — это одна из фундаментальных проблем, которые также необходимо решать. Хотя запасы руды большие, но этот порошок требуется изготовить.
Кроме того чтобы выявить преимущества и недостатки порошковой металлургии необходимо рассмотреть:

  • как готовится порошковый материал;
  • какие этапы процесса изготовления;
  • как должно быть задано давление для того, чтобы можно было получить изделие, которое является достаточно прочным;
  • как должны быть заданы температура и время спекания, чтобы полученный связующий атом считался достаточно прочным;
  • как конструкция заготовки может быть обработана с помощью порошковой металлургии.

Процесс производства металла порошковой металлургией достаточно известен с 18-го века.

Порошковая металлургия — это процесс формирования заготовки из товарного металла, при котором металл сначала разрушается до образования муки, затем прессуется в пресс-форме и нагревается ниже температуры плавления порошка так, чтобы образовалась заготовка. Так что перемешивание частиц металла обусловлено механизмом переноса массы за счет диффузии атомов между поверхностями частиц. Метод подразумевает скрупулезное отношение к составу и использованию смеси.
Продукт порошка может состоять из смеси порошков различных металлов и других материалов, чтобы увеличить твердость и качество объектов в целом.

Кобальт или железо связывают частицы вольфрама, графит добавляют в металлические подшипники для повышения качества подшипников и т.д.

Этапы производства в порошковой металлургии

Шаги, которые необходимо пройти и чтобы определить преимущества порошковой металлургии, в том числе:

  1. Приготовление и изготовление порошка.
  2. Смешивание.
  3. Формование и уплотнение.
  4. Нагрев (спекание).

Существует несколько способов изготовления порошка, среди прочих:

  1. Разложение, происходящее в материале, содержащем металлический элемент. Материал будет разлагаться/отделять элементы при нагревании до достаточно высокой температуры. В этом процессе участвуют два реагента, а именно соединения металла и восстановитель. Второй реагент может быть осязаемым твердым веществом, жидкостью или газом.
  2. Распыление жидких металлов на сопло, через которое подается под давлением вода, так что образующиеся гранулы являются небольшими.
  3. Электролитическое осаждение, изготовление порошков с помощью процесса электролиза, который обычно производит порошок, который является высокореактивным и хрупким. Для этого материала нужно дать специфическую обработку отжига. Форма гранул, получаемых электролитными отложениями — форменная дендритная (форма елочных веточек).
  4. Механическая обработка твердых материалов, изготовление порошков с помощью шарового фрезерования. Материал, изготовленный с помощью механической обработки, должен быть материалом, который легко трескается, таким как чистые металлы, висмут, сурьма, металлический сплав, который является относительно твердым и хрупким и керамика.

Смешивание

Смешивание порошка может быть произведено путем смешивания различных металлов и других материалов для обеспечения лучших физико-механических свойств.
Существует два вида смешивания, а именно:

  1. Влажное смешивание, которое представляет собой процесс, в котором порошковая матрица и наполнитель смешиваются сначала с растворителем. Этот метод применяется, если используемый материал (матрица и наполнитель) легко подвергается окислению. Цель растворителя состоит в том, чтобы облегчить процесс и покрыть поверхность, чтобы предотвратить возникновение окисления на используемом материале.
  2. Сухое смешивание, то есть процесс смешивания осуществляется без использования растворителей, способствующих растворению, и осуществляется на наружном воздухе. Этот метод используется, когда используемый материал нелегко подвергается окислению.

Определяющими факторами однородности распределения частиц являются скорость перемешивания, продолжительность времени перемешивания, размер и тип частиц, температура и среда процесса. Чем больше скорость смешивания тем более однородным получается распределение частиц.Однородность смеси сильно влияет на процесс прессования (уплотнения), поскольку сила сжатия, заданная в момент уплотнения, будет распределена равномерно, так что качество связи между частицами будет лучше.

Прессование (уплотнение)

Прессование-это процесс сдавливания порошка в желаемую форму в соответствии с пресс-формой. Существует 2 вида способа уплотнения, а именно:

  1. Холодное прессование, а именно упор без сильного нагревания, но с давлением от 100 до 900 МПа. Этот метод используется, когда используемые материалы легко окисляются, например алюминий.
    Процесс холодного прессования может состоять из прессования штампа который делается на пресс-форме, содержащей порошок. Холодное прессование с упором на порошок комнатной температуры, который имеет одинаковое давление со всех сторон.
    Также применяется прокатка, а именно упор на порошковый металл с использованием прокатного стана.
  2. Горячее прессование при температуре выше комнатной. Этот метод используется, когда используемый материал не окисляется.

Суть прессования, чтобы порошок мог прилипать друг к другу до улучшения его связи процессом спекания. В процессе получения сплава методом порошковой металлургии связующий порошок образуется в результате сцепления между поверхностью, взаимодействие путем адгезии и диффузии между поверхностью, которые могут возникать в процессе спекания. Форма предметов, которые снимаются с прессования, так называемые компактные сырьевые материалы, должны напоминать конечный продукт, но его прочность все равно невысока.

Чтобы избежать возникновения разницы в плотности в момент прессования используется смазка, направленная на уменьшение трения между частицами и стенками пресс-формы. При использовании смазочного материала выбирается такой, который не реагирует с порошковой смесью и который имеет низкую температуру плавления, так чтобы в процессе спекания исходный уровень смазочного материала испарился.

В процессе уплотнения возможны 3 модели склеивания:

  1. Рисунок склеивающих шариков. Возникает, когда величина заданной силы сжатия меньше предела текучести матрицы и наполнителя, так что порошок не изменяет форму постоянно или деформирует эластичность лучше на матрице и наполнителе, так что порошок остается шарообразным.
  2. Узор склеивания мячикового типа. Возникает, когда величина сжимающей силы обеспечивается между пределом текучести матрицы и наполнителя. Это приводит к тому, что один материал (матрица) пластически деформируется, а другой (наполнитель) нет, так что образующиеся частицы как бы формируют шаровое поле.
  3. Рисунок зон связи. Возникает, когда величина обеспечиваемой сжимающей силы больше на пределе текучести матрицы и наполнителя. Это приводит к тому, что два материала (матрица и наполнитель) пластически деформируются, так что образующиеся частицы как бы формируют поля.

Нагрев (спекание)

Нагрев при температуре ниже температуры плавления композиционных материалов называется спеканием.

В процессе спекания образуются твердые предметы из–за образующейся связи. Тепло вызывает единство частиц и эффективность реакции поверхностного натяжения повышается. Другими словами, процесс спекания вызывает слияние частиц таким образом, что плотность увеличивается. В ходе этого процесса образуются границы зерен, что является стадией перекристаллизации. Температура спекания обычно составляет 0,7-0,9 от температуры плавления. Время нагрева зависит от типа металла. Окружающая среда непосредственно внутри штампа очень важна, потому что сырье состоит из мелких частиц, которые имеют большую площадь поверхности. Поэтому окружающая среда должна состоять из газа восстановления или азота, чтобы предотвратить возникновения оксидного слоя на поверхности во время процесса спекания.

Параметры спекания включают температуру, время, скорость охлаждения, скорость нагрева, атмосферное спекание и тип материала.
Исходя из характера склеивания, возникающего в процессе сжатия, можно выделить 2 явления, которые могут возникнуть в момент спекания, а именно:

Если в момент уплотнения образуется рисунок склеивания шарикового поля, то в процессе спекания образуется усадка, возникающая из-за того, что в процессе спекания газ (смазка), находящийся на пористости, испытывает дегазацию (выделение газа в момент спекания). А если температура спекания будет постоянно повышаться, то произойдет диффузия на поверхности между частицами матрицы и наполнителя, на которой окончательно образуется жидкий мостик горловины (образуется фазовая смесь между матрицей и наполнителем). Жидкий мостик покрывает пористость.

Возможно при уплотнении образуется сцепление между частицами в виде закрытых объемов, вызывающих улавливание газа/смазки внутри материала. В момент спекания захваченный газ не успел выйти наружу, но жидкий мостик уже произошел, так что путь был закрыт. Газ, попавший в эту ловушку, будет проталкиваться в любом направлении так, что произойдет вздутие (расширение), так что давление будет выше, чем давление снаружи. Если качество связующей поверхности частиц в композиционном материале низкое, то он не сможет выдержать большее давление и произойдут трещины (растрескивание). Трещины также могут возникать в результате процесса менее совершенного уплотнения, наличия теплового удара в момент нагрева за счет теплового расширения матрицы и наполнителя.

Процесс спекания включает в себя 3-ступенчатый нагревательный механизм:

  1. Предварительное спекание-это процесс нагрева, который направлен на:
    — уменьшение остаточного напряжения вызванного процессом уплотнения
    — вытеснения газа или твердой смазки, которая задерживается в пористости композиционного материала (дегазация). Не применяется слишком быстрое изменение температуры во время процесса спекания чтобы избежать тепловой удар. Температура предварительного спекания обычно проводится на 1/3 температуры плавления.
  2. Диффузионная процедура
    В процессе нагрева до возникновения массопереноса на поверхности между частицами порошка, взаимодействующими друг с другом, делают падатемпературное спекание (2/3 ). Атомы на поверхности частиц диффундируют между поверхностью, тем самым увеличивая прочность материала.
  3. Устранение пористости
    Конечной целью процесса спекания на основе является получение материала, обладающего высокой прочностью. Именно из-за наличия диффузии между поверхностью частиц порошка, возникает горловина (жидкий мост) между частицами. Нагрева приводит к устранению пористости (образованию спеченной плотности).

На момент финишной обработки пористость полностью спеченного материала все еще значительна (4-15%). Для улучшения свойств могут проводить термообработку.

Преимущества и недостатки порошковой металлургии

Преимущества процесса порошковой металлургии, среди прочих:

  • способность контролировать качество и количество материала;
  • обработка использует низкую температуру поэтому энергоэффективность производства высокая;
  • скорость получения продукта высокая;
  • процесс экономичный, потому что никакой материал не тратится впустую во время обработки.

Недостаток порошковой металлургии, в том числе:

  • стоимость изготовления и хранения порошка дорогая;
  • невозможно получить критически важные допуски, так как металлический порошок не способен перетекать в литейное пространство;
  • трудно получить равномерную плотность.

Заключение

Можно сделать вывод, что порошковая металлургия представляет собой процесс формирования заготовки из товарного металла, при котором металл сначала разрушается в виде муки, затем мука прессуется в пресс-форме и нагревается ниже температуры плавления порошка таким образом, чтобы образовалась заготовка.
Этапы, которые необходимо пройти по порошковой металлургии, среди прочих: подготовка и изготовление порошков, смешивание (перемешивание), упор (уплотнение) и нагрев (спекание).

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector