Кавитационный теплогенератор своими руками чертежи устройство

Кавитационный теплогенератор своими руками чертежи устройство

Кавитационный теплогенератор своими руками чертежи устройство

Узнаем все про кавитационные теплогенераторы

Разнообразные способы экономии энергии или получения дарового электричества сохраняют свою популярность. Благодаря развитию Интернета информация о всевозможных «чудо-изобретениях» становится все доступнее. Одна конструкция, потеряв популярность, сменяется другой.

Сегодня мы рассмотрим так называемый вихревой кавитационный генератор — устройство, изобретатели которого обещают нам высокоэффективный обогрев помещения, в котором оно установлено. Что это такое? Данное устройство использует эффект нагрева жидкости при кавитации — специфическом эффекте образования микропузырьков пара в зонах локального снижения давления в жидкости, происходящем либо при вращении крыльчатки насоса, либо при воздействии на жидкость звуковых колебаний. Если Вам когда-либо доводилось пользоваться ультразвуковой ванной, то Вы могли заметить, как ее содержимое ощутимо нагревается.

Реальность использования кавитации для нагревания

В Интернете распространены статьи о вихревых генераторах роторного типа, принцип действия которых состоит в создании областей кавитации при вращении в жидкости крыльчатки специфической формы. Жизнеспособно ли данное решение?

Начнем с теоретических выкладок. В данном случае мы расходуем электроэнергию на работу электродвигателя (средний КПД — 88%), полученную механическую энергию же частично тратим на трение в уплотнениях кавитационного насоса, частично — на нагрев жидкости вследствие кавитации. То есть в любом случае в тепло будет преобразована лишь часть потраченной электроэнергии. Но если вспомнить, что КПД обычного ТЭНа составляет от 95 до 97 процентов, становится понятным, что чуда не будет: гораздо более дорогой и сложный вихревой насос окажется менее эффективен, чем простая нихромовая спираль.

Можно возразить, что при использовании ТЭНов в систему отопления необходимо вводить дополнительные циркуляционные насосы, в то время как вихревой насос сможет сам перекачивать теплоноситель. Но, как ни странно, создатели насосов борются с возникновением кавитации, не только значительно снижающей эффективность работы насоса, но и вызывающей его эрозию. Следовательно, насос-теплогенератор не только должен быть мощнее специализированного перекачивающего насоса, но и потребует применения более совершенных материалов и технологий для обеспечения сравнимого ресурса.

Важным моментом является тот факт, что, увеличивая кавитацию, создаваемую ротором, мы увеличиваем нагрев жидкости и одновременно снижаем эффективность насоса. Реально работающий как нагреватель кавитатор уже практически не сможет перекачивать теплоноситель, а значит, точно так же, как и ТЭН, потребует применения отдельного циркуляционного насоса. При этом общая эффективность вихревого насоса все равно будет меньше КПД его привода.

Кроме роторно-вихревых насосов, можно встретить такое устройство, как статический теплогенератор («вихревая труба»). В нем используется эффект кавитации, возникающий при прохождении потока жидкости сквозь сопло Лаваля и соответствующем резком изменении скорости и давления. Но по ряду причин такое устройство неэффективно в системах отопления:

  • Чем больше перепад давлений, тем больше нагрев;
  • Для большего перепада давлений необходимо уменьшение диаметра сопла, а следовательно — увеличение гидродинамического сопротивления системы;
  • Следовательно, чем эффективнее работает сопло, тем больший запас мощности циркуляционного насоса потребуется.

Какой-либо расчет энергии, отбираемой кавитацией у потока жидкости, практически невозможен. Осознание низкой эффективности этой схемы настолько просто, что она не используется даже авторами «чудо-устройств».

Для оправдания заявляемого КПД выше единицы создатели вихревых кавитационных теплогенераторов зачастую приводят оправдания на грани комизма, вплоть до возникновения в зоне кавитации низкотемпературной ядерной реакции. Какое-либо доверие к этой технологии подобные заверения только снижают еще сильнее. Часто встречающиеся похвальные отзывы под статьями о подобных устройствах не выдерживают критики — каких-либо реальных данных, позволяющих провести расчет эффективности отопительных систем на основе вихревого насоса, они не предоставляют.

Распространенные устройства

Рассмотрим наиболее часто рекламируемые в Интернете вихревые насосы.

Выпускаемый НПП «ЭкоЭнергоМаш» насос НТГ-5,5 имеет следующие характеристики:

  • Мощность электродвигателя: 5,5 кВт
  • Теплопроизводительность: 6,6 кВт/ч

Здесь возникает первый вопрос к производителю: каким образом, в обход закона сохранения энергии, это устройство выделяет тепловой энергии больше, чем потребляет электрической? Точно такое же превышение тепловыделения над расходом энергии обещается и для других изделий этой фирмы.

Московская компания «Экотепло» выпускает несколько вариантов вихревого теплогенератора, наименее мощный из которых — это 55-киловаттный НТГ-055. Столь высокая мощность привода недвусмысленно указывает на реальную тепловую производительность устройств подобного класса, хотя производитель по-прежнему указывает в описании превосходство своих изделий над традиционными электрическими котлами.

В описании устройств, производимых НПО «Термовихрь», характеристики более завуалированы. Так, для трехкиловаттной модели вихревого теплогенератора заявленная теплопроизводительность составляет 3100 ккал/ч. Но, если вспомнить школьный курс физики, можно вычислить, что при стопроцентном преобразовании электрической энергии в тепловую 1 кВт*ч энергии равен 860 килокалориям, то есть идеальный вихревой насос с заявленной теплопроизводительностью потреблял бы 3,6 киловатт-часа электроэнергии. Следовательно, нам вновь предлагают устройство, часть тепловой энергии берущее из ниоткуда.

Информация от производителей таких устройств, репортаж телеканала Россия

Самодельные теплогенераторы

Наиболее проста в изготовлении «вихревая трубка», или статический теплогенератор.

Конструктивно наше сопло Лаваля будет выглядеть как металлический патрубок с трубной резьбой на концах, позволяющей при помощи резьбовых муфт соединить его с трубопроводом. Для изготовления патрубка понадобится токарный станок.

  • Сама форма сопла, точнее, его выходной части, может отличаться по исполнению. Вариант «а» наиболее прост в изготовлении, а его характеристики можно варьировать изменением угла выходного конуса в пределах 12-30 градусов. Однако такой тип сопла обеспечивает минимальное сопротивление потоку жидкости, а, следовательно, и наименьшую кавитацию в потоке.
  • Вариант «б» более сложен в изготовлении, но за счет максимального перепада давления на выходе сопла создаст и наибольшую турбулентность потока. Условия для возникновения кавитации в этом случае являются оптимальными.
  • Вариант «в» — компромиссный по сложности изготовления и эффективности, поэтому стоит остановиться на нем.

Изготовив сопло, можно собрать экспериментальный контур, состоящий из электрического насоса, соединительных патрубков, непосредственно сопла и термометра, который мы используем для определения эффективности устройства. Для уменьшения влияния рассеивания тепла в окружающую среду патрубки лучше всего сделать короткими и замотать их теплоизоляционным материалом. Заполнив контур устройства водой и запомнив ее количество, включим насос ровно на час, чтобы по электросчетчику определить количество израсходованной электроэнергии.

Тепловую мощность самодельного теплогенератора можно определить по следующей формуле, известной по школьному курсу физики:


E=cm(T2-T1)

Где с — это удельная теплоемкость воды (4200 Дж/(кг*К)), m — ее масса, T2 — температура воды в конце работы насоса, Т1 — температура в начале. Полученную энергию, измеренную в джоулях. Сравнить ее с израсходованной электроэнергией можно, учитывая соотношение в 1000 Дж на 0.000277 киловатт-часов энергии. Иначе говоря, при стопроцентном КПД устройство, израсходовавшее 1 киловатт-час энергии, не сможет создать тепловой энергии больше 3600 килоджоулей.

ПРИМЕР: Наше устройство нагрело за час 1 литр воды с 10 до 60 градусов. Получаем тепловую энергию в 210 килоджоулей.

Посмотрите, что сообщают о таких устройствах производители

Заключение

По этой причине к их использованию стоит относиться скорее как к демонстрации интересного физического эффекта, чем как к реальному способу экономии электроэнергии.

Кавитационный теплогенератор: устройство, виды, применение

Для отопления помещений или нагрева жидкостей зачастую применяются классические приспособления – тэны, камеры сгорания, нити накаливания и т.д. Но наряду с ними применяются устройства с принципиально иным типом воздействия на теплоноситель. К таким устройствам относится кавитационный теплогенератор, работа которого заключается в формировании пузырьков газа, за счет которых и возникает выделение тепла.

Устройство и принцип работы

Принцип действия кавитационного теплогенератора заключается в эффекте нагрева за счет преобразования механической энергии в тепловую. Теперь более детально рассмотрим само кавитационное явление. При создании избыточного давления в жидкости возникают завихрения, из-за того, что давление жидкости больше чем у содержащегося в ней газа, молекулы газа выделяются в отдельные включения – схлопывание пузырьков. За счет разности давления вода стремиться сжать газовый пузырь, что аккумулирует на его поверхности большое количество энергии, а температура внутри достигает порядка 1000 — 1200ºС.

При переходе кавитационных полостей в зону нормального давления пузырьки разрушаются, и энергия от их разрушения выделяется в окружающее пространство. За счет чего происходит выделение тепловой энергии, а жидкость нагревается от вихревого потока. На этом принципе основана работа тепловых генераторов, далее рассмотрите принцип работы простейшего варианта кавитационного обогревателя.

Простейшая модель

Посмотрите на рисунок 1, здесь представлено устройство простейшего кавитационного теплогенератора, который заключается в нагнетании насосом воды к месту сужения трубопровода. При достижении водяным потоком сопла давление жидкости значительно возрастает и начинается образование кавитационных пузырьков. При выходе из сопла пузырьки выделяют тепловую мощность, а давление после прохождения сопла значительно снижается. На практике может устанавливаться несколько сопел или трубок для повышения эффективности.

Идеальный теплогенератор Потапова

Идеальным вариантом установки считается теплогенератор Потапова, который имеет вращающийся диск (1) установленный напротив стационарного (6). Подача холодной воды осуществляется с трубы расположенной внизу (4) кавитационной камеры (3), а отвод уже нагретой с верхней точки (5) той же камеры. Пример такого устройства приведен на рисунке 2 ниже:

Рис. 2: кавитационный теплогенератор Потапова

Но широкого распространения устройство не получило из-за отсутствия практического обоснования его работы.

Основная задача кавитационного теплогенератора – образование газовых включений, а от их количества и интенсивности будет зависеть качество нагрева. В современной промышленности существует несколько видов таких теплогенераторов, отличающихся принципом выработки пузырьков в жидкости. Наиболее распространенными являются три вида:

  • Роторные теплогенераторы – рабочий элемент вращается за счет электропривода и вырабатывает завихрения жидкости;
  • Трубчатые – изменяют давление за счет системы труб, по которым движется вода;
  • Ультразвуковые – неоднородность жидкости в таких теплогенераторах создается за счет звуковых колебаний низкой частоты.

Помимо вышеперечисленных видов существует лазерная кавитация, но промышленной реализации этот метод еще не нашел. Теперь рассмотрим каждый из видов более детально.

Роторный теплогенератор

Состоит из электрического двигателя, вал которого соединен с роторным механизмом, предназначенным для создания завихрений в жидкости. Особенностью роторной конструкции является герметичный статор, в котором и происходит нагревание. Сам статор имеет цилиндрическую полость внутри – вихревую камеру, в которой происходит вращение ротора. Ротор кавитационного теплогенератора представляет собой цилиндр с набором углублений на поверхности, при вращении цилиндра внутри статора эти углубления создают неоднородность в воде и обуславливают протекание кавитационных процессов.

Рис. 3: конструкция генератора роторного типа

Количество углублений и их геометрические параметры определяются в зависимости от модели вихревого теплогенератора. Для оптимальных параметров нагрева расстояние между ротором и статором составляет порядка 1,5мм. Данная конструкция является не единственной в своем роде, за долгую историю модернизаций и улучшений рабочий элемент роторного типа претерпел массу преобразований.

Одной первых эффективных моделей кавитационных преобразователей был генератор Григгса, в котором использовался дисковый ротор с несквозными отверстиями на поверхности. Один из современных аналогов дисковых кавитационных теплогенераторов приведен на рисунке 4 ниже:

Рис. 4: дисковый теплогенератор

Несмотря на простоту конструкции, агрегаты роторного типа достаточно сложные в применении, так как требуют точной калибровки, надежных уплотнений и соблюдения геометрических параметров в процессе работы, что обуславливает трудности их эксплуатации. Такие кавитационные теплогенераторы характеризуются достаточно низким сроком службы – 2 — 4 года из-за кавитационной эрозии корпуса и деталей. Помимо этого они создают достаточно большую шумовую нагрузку при работе вращающегося элемента. К преимуществам такой модели относится высокая продуктивность – на 25% выше, чем у классических нагревателей.

Трубчатые

Статический теплогенератор не имеет вращающихся элементов. Нагревательный процесс в них происходит за счет движения воды по трубам, сужающимся по длине или за счет установки сопел Лаваля. Подача воды на рабочий орган осуществляется гидродинамическим насосом, который создает механическое усилие жидкости в сужающемся пространстве, а при ее переходе в более широкую полость возникают кавитационные завихрения.

В отличии от предыдущей модели трубчатое отопительное оборудование не производит большого шума и не изнашивается так быстро. При установке и эксплуатации не нужно заботиться о точной балансировке, а при разрушении нагревательных элементов их замена и ремонт обойдутся куда дешевле, чем у роторных моделей. К недостаткам трубчатых теплогенераторов относят значительно меньшую производительность и громоздкие габариты.

Ультразвуковые

Данный тип устройства имеет камеру-резонатор, настроенную на определенную частоту звуковых колебаний. На ее входе устанавливается кварцевая пластина, которая производит колебания при подаче электрических сигналов. Вибрация пластины создает волновой эффект внутри жидкости, который достигая стенок камеры-резонатора и отражается. При возвратном движении волны встречаются с прямыми колебаниями и создают гидродинамическую кавитацию.

Рис. 5: принцип работы ультразвукового теплогенератора

Далее пузырьки уносятся водным потоком по узким входным патрубкам тепловой установки. При переходе в широкую область пузырьки разрушаются, выделяя тепловую энергию. Ультразвуковые кавитационные генераторы также обладают хорошими эксплуатационными показателями, так как не имеют вращающихся элементов.

Применение

В промышленности и в быту кавитационные теплогенераторы нашли реализацию в самых различных сферах деятельности. В зависимости от поставленных задач они применяются для:

  • Отопления – внутри установок происходит преобразование механической энергии в тепловую, благодаря чему нагретая жидкость двигается по системе отопления. Следует отметить, что кавитационные теплогенераторы могут отапливать не только промышленные объекты, но и целые поселки.
  • Нагревание проточной воды – кавитационная установка способна быстро нагревать жидкость, за счет чего может легко заменять газовую или электрическую колонку.
  • Смешение жидких веществ – за счет разрежения в слоях с получением мелких полостей такие агрегаты позволяют добиться надлежащего качества перемешивания жидкостей, которые естественным образом не совмещаются из-за разной плотности.

Плюсы и минусы

В сравнении с другими теплогенераторами, кавитационные агрегаты отличаются рядом преимуществ и недостатков.

К плюсам таких устройств следует отнести:

  • Куда более эффективный механизм получения тепловой энергии;
  • Расходует значительно меньше ресурсов, чем топливные генераторы;
  • Может применяться для обогрева как маломощных, так и крупных потребителей;
  • Полностью экологичен – не выделяет в окружающую среду вредных веществ во время работы.

К недостаткам кавитационных теплогенераторов следует отнести:

  • Сравнительно большие габариты – электрические и топливные модели имеют куда меньшие размеры, что немаловажно при установке в уже эксплуатируемом помещении;
  • Большая шумность за счет работы водяного насоса и самого кавитационного элемента, что затрудняет его установку в бытовых помещениях;
  • Неэффективное соотношение мощности и производительности для помещений с малой квадратурой (до 60м 2 выгоднее использовать установку на газу, жидком топливе или эквивалентной электрической мощности с нагревательным тэном).

КТГ своими руками

Наиболее простым вариантом для реализации в домашних условиях является кавитационный генератор трубчатого типа с одним или несколькими соплами для нагревания воды. Поэтому разберем пример изготовления именно такого устройства, для этого вам понадобится:

  • Насос – для нагревания обязательно выбирайте тепловой насос, который не боится постоянного воздействия высоких температур. Он должен обеспечивать рабочее давление на выходе в 4 – 12атм.
  • 2 манометра и гильзы для их установки – размещаются с двух сторон от сопла для измерения давления на входе и выходе из кавитационного элемента.
  • Термометр для измерения величины нагрева теплоносителя в системе.
  • Клапан для удаления лишнего воздуха из кавитационного теплогенератора. Устанавливается в самой верхней точке системы.
  • Сопло – должно иметь диаметр проходного отверстия от 9 до 16мм, делать меньше не рекомендуется, так как кавитация может возникнуть уже в насосе, что значительно снизит срок его эксплуатации. По форме сопло может быть цилиндрическим, коническим или овальным, с практической точки зрения вам подойдет любое.
  • Трубы и соединительные элементы (радиаторы отопления при их отсутствии ) – выбираются в соответствии с поставленной задачей, но наиболее простым вариантом являются пластиковые трубы под пайку.
  • Автоматика включения/отключения кавитационного теплогенератора – как правило, подвязывается под температурный режим, устанавливается на отключение примерно при 80ºС и на включение при снижении менее 60ºС. Но режим работы кавитационного теплогенератора вы можете выбрать самостоятельно.

Рис. 6: схема кавитационного теплогенератора

Перед соединением всех элементов желательно нарисовать схему их расположения на бумаге, стенах или на полу. Места расположения необходимо размещать вдали от легковоспламеняемых элементов или последние нужно убрать на безопасное расстояние от системы отопления.

Соберите все элементы, как вы изобразили на схеме, и проверьте герметичность без включения генератора. Затем опробуйте в рабочем режиме кавитационного теплогенератора, нормальным нарастанием температуры жидкости считается 3- 5ºС за одну минуту.

Обзор кавитационного генератора тепла и его самостоятельное изготовление

Кавитационный теплогенератор пользуется популярностью в качестве экономичного отопительного оборудования. Кавитация – специфический эффект с образованием микропузырьков пара в зонах локального снижения давления рабочей жидкости. Процесс предусматривает воздействие насосного агрегата или звуковых колебаний.

Конструктивные особенности и принцип работы

На основе кавитационного теплогенератора механическая энергия движения воды (рабочей жидкости) преобразуется в тепло, которое используется для обогрева помещений любого назначения. Кавитация подразумевает образование пузырьков в жидкости, в результате разрушения которых вырабатывается тепловая энергия.

Принцип работы кавитатора:

  • рабочий поток перемещается по устройству, в котором обеспечивается давление при помощи насоса,
  • далее с повышением скорости происходит локальное снижение давления субстанции,
  • в жидкости образуются свободные места, заполняемые пузырьками.

Впоследствии в центре камеры потоки перемешиваются, и происходит процесс кавитации: пузырьки схлопываются, в результате механическая энергия преобразуется в тепловой потенциал. Это объясняется тем, что при формировании вихревого потока кавитационные разрывы приводят к нагреву жидкой среды.

Возможности применения

Приборы кавитационного действия востребованы в различных отраслях, при этом в основном их применяют в качестве альтернативного вида отопительных установок для дома. Также оборудование находит применение и в других сферах:

  • обогрев и очистка воды в бассейнах,
  • очистка отложений внутри теплообменников,
  • в промышленности.

В последнем случае, к примеру, при изготовлении бетона с высокими эксплуатационными характеристиками.

Отопление

Кавитационный прибор способствует преобразованию механической энергии перемещающейся воды в тепловой потенциал, который направляется на обогрев различных по назначению и масштабу зданий, включая частные домовладения и промышленные комплексы.

Кавитационный теплогенератор может быть использован при отоплении

Автономное нагревание воды для бытовых нужд

Генератор кавитационного тепла способен в полной мере обеспечить хозяйство горячей водой, которая подается в кухню, санузел, баню. Также оборудование находит применение при подготовке воды в бассейнах, прачечных и саунах, используется в автономном водопроводе.

Применение кавитации тепла в производстве

Приборы актуальны при необходимости качественного смешивания субстанций с разными параметрами плотности и применяются в лабораториях, производственных цехах и других объектах промышленности.

Разновидности

Кавитационные устройства делятся на следующие виды:

  • роторные – вихревой кавитационный теплогенератор предусматривает видоизмененный центробежный насос, корпус которого представляет собой статор с входящей и выходящей трубой. Основной рабочий орган прибора – камера с подвижным ротором, который вращается по типу колеса,
  • статические – в приборе отсутствуют вращающиеся детали, для кавитации применяют конструкцию из сопел с мощным центробежным насосом,
  • трубчатые – в конструкции предусмотрены продольно расположенные трубки. КПД трубчатых теплогенераторов кавитации отличается высокими показателями,
  • ультразвуковые – эффект кавитации обеспечивается при помощи ультразвуковых волн.

Кавитационный теплогенератор вихревой

КПД ультразвукового оборудования невероятно высок.

Принцип работы роторных генераторов

Пожалуй, к самым продуктивным моделям относится конструкция Григгса, в которой ротор в форме диска располагает поверхностью с многочисленными глухими отверстиями определенного диаметра и глубины. Статор представлен в виде цилиндра с запаянными концами, в котором вращается ротор. Между роторным диском и стенками статора есть зазор величиной около 1,5 мм. В ячейках устройства обеспечивается возникновение завихрений для образования кавитационных полостей. Количество ячеек определяется частотой вращения ротора.

Как отмечают специалисты, для эффективности работы прибора применяется ротор с поперечным размером от 30 см со скоростью вращения 3 000 оборотов/мин. При меньшем диаметре требуется увеличить параметры оборотов.

Особенности роторных теплогенераторов кавитационного действия:

  • присутствует значительный уровень шума,
  • КПД устройства не впечатляет,
  • непродолжительный срок службы,
  • показатели производительности на 25% выше, чем у статических моделей.

При эксплуатации роторной установки требуется отработка четкого действия всех элементов, в том числе и балансировка цилиндра. Также необходимо своевременно менять исчерпавшие свой потенциал изоляционные материалы для уплотнения вала.

Принцип работы статического теплогенератора

Кавитация предполагает высокую скорость перемещения рабочей жидкости при помощи мощного мотора центробежного типа. Так как dвыхода сопла значительно меньше, чем параметры противоположного конца, увеличивается скорость перемещения субстанции, и возникают кавитационные эффекты.

Статические кавитаторные приборы располагают массой преимуществ:

  • не требуется балансировка и точная подгонка деталей,
  • уплотнители изнашиваются меньше, чем в роторной модели, так как здесь отсутствуют подвижные детали,
  • продолжительность срока службы статического кавитатора около 5 лет, что значительно больше, чем у предыдущего варианта прибора.

При необходимости производится замена сопла, для чего понадобится относительно небольшой расход времени и сил, тогда как в случае с роторным прибором придется воссоздать его заново, если оборудование выйдет из строя.

Трубчатые тепловые генераторы: устройство и принцип работы

В этой модели кавитационное тепло вырабатывается благодаря продольному расположению трубок:

  • помпа способствует нагнетанию давления во входящую камеру, и рабочая субстанция направляется через трубки. При этом на входе образуются пузырьки,
  • при попадании во вторую камеру, где установлено высокое давление, пузырьки разрушаются, в процессе образуется тепловой потенциал.
Читайте также  Как приклеить москитную сетку

Трубчатый тепловой генератор

Выработанная таким способом энергия направляется вместе с паром на отопление дома. Как утверждают производители трубчатых теплогенераторов кавитации, как и специалисты в сфере климатического оборудования, эта модель отличается высокими показателями КПД.

Особенности ультразвуковых генераторов кавитационного действия

В установке создаются ультразвуковые волны, благодаря которым образуется кавитационное тепло. Для этого применяется кварцевая пластина, на ее основе под воздействием электрического тока создаются звуковые колебания. Они направляются на вход, впоследствии чего образуется вибрация. На обратной фазе звуковых волн возникают участки разряжения и наблюдается эффект кавитации. Принцип работы ультразвукового кавитатора предполагает минимальные потери энергии и практическое отсутствие трения. Всем этим обуславливается исключительно высокий КПД ультразвукового оборудования.

Плюсы и минусы

Основным достоинством кавитационного теплогенератора считается экономичность работы отопительного устройства. Также среди плюсов отмечают следующие факторы:

  • высокий уровень производительности прибора,
  • возможность самостоятельного изготовления и монтажа,
  • оборудование можно установить без разрешительных документов.

Среди недостатков выделяют:

  • необходимо обустроить отдельное помещение под котельную,
  • достаточно высокий уровень шума при работе прибора.

Нельзя забывать, что оборудование занимает много места.

Критерии выбора

При выборе устройства кавитации учитывают следующие моменты:

  1. Важно подобрать конструкцию в соответствии с условиями эксплуатации. Следует учесть масштабы отапливаемого пространства, возможности теплоизоляции помещений, климатические особенности местности в межсезонье и зимой.
  2. Стоит решить вопросы комплектации при приобретении стандартного оборудования. В этом случае, желательно, чтобы изделие было укомплектовано датчиками защиты и приборами контроля тепла. Оптимальный вариант – приобретение техники с автоматическим блоком контроля и управления, также стоит заказать услугу «монтаж под ключ».
  3. В случае приобретения оборудования по отдельным элементам, необходимо четко знать все особенности каждого компонента системы.

Если планируется самостоятельное изготовление, важно тщательно изучить схемы и вооружиться рекомендациями специалистов, далее приступают к выбору модели.

Популярные модели

Отечественными производителями предлагаются модели кавитаторов гидроударного и электрогидроударного типа. Линейка включает в себя агрегаты небольшой мощности.

ВТГ-2.2

Оборудование представляет собой прибор малой мощности, который подходит для отопления сооружения объемом до 90 м³. Стоимость продукции варьируется в пределах 32-35 т. р.

ВГТ-30

Агрегат средней мощности, разработан для обогрева зданий объемом до 1400 м³. Требуется комплектация в виде шкафа управления. Цена изделия – около 150 000 р.

Продукция ижевских производителей, как заявляют поставщики кавитаторов, располагает КПД до 150%. Несмотря на высокий диапазон стоимости, модель привлекает внимание широкой аудитории потребителей.

Как изготовить кавитационные теплогенераторы своими руками?

Оборудование представляет собой простое устройство, что позволяет при необходимости самостоятельно изготовить конструкцию.

Необходимые инструменты и материалы:

  • манометры – для контроля давления на входе/выходе,
  • термометры – для измерения температуры рабочей жидкости при входе/выходе,
  • гильзы под термометры.

Также нужны патрубки с кранами – входные и для выхода.

Особенности выбора насоса

Параметры насоса должны соответствовать специфическим требованиям. Так, нужен агрегат с возможностью работы с высокотемпературными субстанциями. Также учитывается способность прибора создавать необходимое рабочее давление – при входе жидкости достаточно давления в 4 атмосферы, для увеличения скорости нагрева требуется показатель до 12 атмосфер.

Изготовление кавитационной камеры

В самодельных приборах кавитации чаще всего предусматривается вариант в виде сопла Лаваля. Выбирая размер сечения проходного канала, стоит учитывать, что требуется обеспечение максимального перепада давления рабочей субстанции. Для этого подбирают модель наименьшего диаметра, в результате получается достаточно активный процесс кавитации. Приемлемым считается d9-16 мм, при меньшем сечении уменьшается интенсивность водного потока, что приводит к смешиванию жидкости с холодными массами. Применение сопла с маленьким отверстием также чревато следующими последствиями:

  • увеличивается число воздушных пузырьков. В результате наблюдается усиление шума при работе оборудования,
  • есть риск образования пузырьков уже в камере насоса, что может стать причиной его быстрого выхода из строя.

В зависимости от параметров установки выбирают сопла цилиндрической формы, закругленного или конусного профиля. Главное – необходимо обеспечить образование вихревого процесса уже на начальном этапе входа рабочей субстанции в сопло.

Особенности изготовления водяного контура

При самостоятельном конструировании прибора предварительно выполняют схему: определяют протяженность контура, уточняют особенности модели и переносят все это мелом на пол.

Конструкция представляет собой изогнутую трубу, которая присоединяется к выходу камеры, далее рабочая среда снова подается на вход.Субстанцияв контур поступает по направлению против часовой стрелки. Контур снабжается двумя манометрами и парой гильз с термометрами. Модель дополняет вентиль для сбора воздуха. Для регулирования давления вентиль устанавливается между входом и выходом.

Испытание генератора

После установки оборудования и подключения радиаторов к системе отопления насосное устройство включают в сеть и запускают двигатель. При исправной работе конструкции подается необходимое количество воды. Показание манометров давления жидкой среды регулируют при помощи вентиля, учитывая, что требуется разница в диапазоне 8-12 атмосфер. После пуска рабочей жидкости наблюдают параметры температуры: корректным считается нагревание 3-5°C/10 минут. С учетом, что система и насос запитаны 15 л воды, за небольшой отрезок времени нагрев достигнет 60°C. Это хороший результат для эффективной работы отопительного оборудования.

Отопительное оборудование кавитационного типа – экономичный прибор, который способен обогреть помещение за короткий промежуток времени. Производители предлагают различные модели устройства, при необходимости несложно изготовить конструкции самостоятельно с учетом особенностей обустраиваемой площади.

Кавитационный теплогенератор своими руками

Хозяева частных домов всячески стремятся сэкономить на отоплении, которое год от года требует немалых затрат. С целью создания обогревательных экономных систем в жилых, производственных, общественных помещениях разрабатываются и применяются на практике различные схемы по выработке выгодной тепловой энергии. Для этих целей подходит кавитационный теплогенератор.

Вихревое устройство: общее понятие

Подобная установка конструктивно достаточно проста. Она используется для эффективного и выгодного отопления здания с минимальными финансовыми затратами. Экономичность обуславливается специальным нагревом воды через кавитацию. Такой метод заключается в создании мелких пузырьков из пара в зоне сниженного давления рабочей жидкости, которое обеспечивается специальными звуковыми колебаниями, функционированием насоса.

Кавитационный нагреватель справляется с переработкой механической энергии в тепловой поток, что немаловажно для промышленных объектов. В них нагревательные элементы периодически выходят из строя, поскольку функционируют с жидкостями большой разности по температуре.

Именно такие кавитаторы выступают надежной заменой устройствам, работа которых зависит от твердых видов топлива.

В этом видео вы узнаете, как устроен теплогенератор:

Кавитационные генераторы: преимущества

Такие установки нашли широкое применение в бутовых условиях и на производстве. Причиной тому выступают следующие факторы, их характеризующие:

  • ценовая доступность;
  • экономичность отопительной системы;
  • возможность создания конструкции своими руками;
  • высокий КПД обогрева.

Правила эксплуатации гласят, что нельзя устанавливать вихревые изделия внутри жилого помещения из-за создания высокоуровневого шума. Оптимальным вариантом станет обустройство отдельной хозпостройки, котельной.

К недостаткам относятся довольно большие размеры готового к эксплуатации обогревателя. Также отмечается чрезмерная мощность для частного дома, коттеджа, возможная сложность приобретения материалов, которые понадобятся в случае самостоятельного изготовления кавитатора.

В данном обогревателе, одним из плюсов является высокий КПД

Строение нагревателя и принцип работы

Кавитационное отопление характеризуется образованием пузырьков из пара в рабочей жидкости. В результате такого действия давление постепенно снижается благодаря высокой скорости потока. Следует отметить, что необходимое парообразование задается специальным излучением лазерных импульсов либо акустикой, заданной определенными звуками. Воздушные области закрытого типа смешиваются с водяной массой, после чего поступают в зону большого давления, где вскрываются и излучают ожидаемую ударную волну.

Оборудование кавитационного типа отличается способом функционирования. Схематично оно выглядит так:

  1. Водяной поток перемещается по кавитатору, в котором с помощью циркуляционного насоса обеспечивается рабочее давление, поступающее в рабочую емкость.
  2. Далее в таких емкостях повышается скорость, соответственно, и давление жидкости посредством установленных по чертежам трубок.
  3. Потоки, достигая центральной части камеры, перемешиваются, в результате чего и образуется кавитация.
  4. В результате описанного процесса пузырьки пара не увеличиваются в размерах, отсутствует их взаимодействие с электродами.
  5. После этого вода перемещается в противоположную часть емкости и возвращается для совершения нового круга.
  6. Нагревание обеспечивается передвижением и расширением жидкости в месте выхода из сопла.

Из работы вихревой установки видно, что ее конструкция незамысловата и проста, но при этом обеспечивает быстрый и выгодный обогрев помещения.

Типы обогревателей

Кавитационный котел отопления относится к одному из распространенных типов обогревателей. Наиболее востребованные из них:

  1. Роторные установки, среди которых особого внимания заслуживает устройство Григгса. Суть его действия основана на центробежном насосе роторного действия. Внешне описываемая конструкция напоминает диск с несколькими отверстиями. Каждая такая ниша называется ячейкой Григгса, их количество и функциональные параметры взаимозависимы с частотой вращения привода, типом применяемой генераторной установки. Рабочая жидкость подогревается в пространстве между ротором и статором из-за быстрого перемещения по дисковой поверхности.
  2. Статические обогреватели. Котлы лишены каких-либо передвигающихся деталей, кавитация в них обеспечивается за счет специальных элементов Лаваля. Установленный в отопительную систему насос задает необходимое давление воды, которая начинает быстро передвигаться и подогреваться. За счет узких отверстий в соплах жидкость перемещается в ускоренном режиме. Из-за ее быстрого расширения достигается необходимая для обогрева кавитация.

Выбор того или иного нагревателя зависит от потребностей человека. Следует учитывать, что роторный кавитатор более производителен, к тому же он отличается меньшими размерами.

Особенность статического агрегата заключается в отсутствии вращающихся деталей, чем и обуславливается его продолжительный эксплуатационный срок. Длительность работы без технического обслуживания достигает 5 лет. Если же сломается сопло, его без труда можно заменить, что стоит гораздо дешевле в сравнении с приобретением нового рабочего элемента в роторную установку.

Самостоятельное изготовление оборудования

Создать кавитатор своими руками вполне реально, но предварительно стоит ознакомиться со схематическими особенностями, точными чертежами агрегата, понять и подробно изучить принцип, по которому он действует. Наиболее простой моделью принято считать ВТГ Потапова с показателем КПД в 93%. Схематически теплогенератор довольно прост, будет уместен в быту и промышленном применении.

Приступая к сборке агрегата, необходимо подобрать в систему насос, который должен полностью соответствовать требованиям мощности, необходимой тепловой энергии. В большинстве своем описываемые генераторы по форме напоминают сопло, такие модели самые удобные и простые для домашнего применения.

При собственноручном создании теплогенератора не забываем нужные зап.части, например, гильзы

Создание кавитатора невозможно без предварительной подготовки определенных инструментов и приспособлений. К ним относятся:

  • патрубки входного и выходного типа, оснащенные краниками;
  • манометры, измеряющие давление;
  • термометр, без которого невозможно произвести замер температуры;
  • гильзы, которыми дополняются термометры;
  • вентили, с помощью которых из всей отопительной системы устраняются воздушные пробки.

Специалисты рекомендуют следить за диаметральным показателем сечения отверстия, которое присутствует между конфузором и диффузором. Оптимальные пределы варьируются от 8 до 15 единиц, выход за эти рамки нежелателен.

Последовательность конструирования кавитационного теплогенератора своими руками представлена следующими действиями:

  1. Выбор насоса, который предназначен для эксплуатации с жидкостями высоких температур. В противном случае он быстро выйдет из строя. К такому элементу предъявляется обязательное требование: создание давления от 4 атмосфер.
  2. Выполнение емкости для кавитации. Главным условием выступает подбор необходимого по сечению проходного канала.
  3. Выбор сопла с учетом особенностей конфигурации. Такая деталь может быть цилиндрического, конусообразного, округлого типа. Важно, чтобы на входе воды в емкость развивался вихревой процесс.
  4. Подготовка внешнего контура — немаловажная процедура. Он представляет собой изогнутую трубку, которая отходит от кавитационной камеры. Далее она соединяется с двумя гильзами от термометра и двумя манометрами, а также с воздушным вентилем, помещенным в пространство между выходом и входом.

Когда закончена работа с корпусом, следует поэкспериментировать с обогревателем. Процедура заключается в подведении насосной установки к электросети, при этом радиаторы подключаются с обогревательной системой. Следующий шаг — включение сети.

Должен осуществляться строгий контроль показателей манометров. Разница между цифрами на входе и выходе должна колебаться в пределах 8-12 атмосфер.

Если конструкция работает исправно, в нее подается необходимое количество воды. Хороший показатель — подогрев жидкости на 3-5 градусов за 10-15 минут.

Нагреватель кавитационного типа представляет собой выгодную установку, за короткое время обогревает здание, к тому же максимально экономичен. При желании он легко конструируется в домашних условиях, для чего понадобятся доступные и недорогие приспособления.

Теплогенератор кавитационный для отопления помещения

Чтобы обеспечить экономное отопление жилого, подсобного или производственного помещения, хозяева используют различные схемы и приемы получения тепловой энергии. Для того чтобы собрать теплогенератор кавитационного действия своими руками, следует разобраться в процессах, которые позволяют осуществить выработку тепла.

Что лежит в основе работы

Кавитация обозначает процесс образования парообразных пузырьков в толще воды, чему способствует медленное понижение водяного давления при большой скорости потока. Возникновение каверн или полостей, заполненных паром, может быть вызвано и прохождением акустической волны или излучением лазерного импульса. Замкнутые области воздуха, или кавитационные пустоты, перемещаются водой в область высокого давления, где происходит процесс их схлопывания с излучением волны ударной силы. Явление кавитации не может возникнуть при отсутствии указанных условий.

Физический процесс кавитационного явления сродни закипанию жидкости, но при кипении давление воды и пара в пузырьках является средним по значению и одинаковым. При кавитации давление в жидкости выше среднего и выше парового давления. Понижение же напора носит локальный характер.

При создании нужных условий молекулы газа, которые всегда присутствуют в толще воды, начинают выделяться внутрь образующихся пузырьков. Этот явление проходит интенсивно, так как температура газа внутри полости достигает до 1200ºС из-за постоянного расширения и сжимания пузырьков. Газ в кавитационных полостях содержит большее число молекул кислорода и при взаимодействии с инертными материалами корпуса и других деталей теплогенератора приводит к их скорой коррозии и разрушению.

Исследования показывают, что разрушительному действию агрессивного кислорода подвергаются даже инертные к этому газу материалы – золото и серебро. Кроме того, явление схлопывания воздушных полостей вызывает достаточно шума, что является нежелательной проблемой.

Многие энтузиасты сделали процесс кавитации полезным для создания отопительных теплогенераторов частного дома. Суть системы заключена в замкнутом корпусе, в котором продвигается водяная струя через кавитационное устройство, для получения давления используется обыкновенный насос. В России на первое изобретение отопительной установки был выдан патент в 2013 году. Процесс образования разрыва пузырьков происходит под действием переменного электрического поля. При этом паровые полости являются маленькими по размеру и не взаимодействуют с электродами. Они передвигаются в толщу жидкости, и там происходит вскрытие с выделением дополнительной энергии в теле водяного потока.

Виды теплогенераторов

Роторный генератор тепла

Такое устройство представляет собой видоизмененный насос центробежного действия. В таком устройстве роль статора исполняет корпус насоса, в него установлена входящая и выходящая труба. Основным рабочим органом является камера, внутрь которой помещен подвижный ротор, работающий по типу колеса.

За время создания кавитационных насосов конструкция ротора претерпела много изменений, но самой продуктивной считается модель Григгса, который одним из первых достиг положительных результатов в создании теплогенератора кавитационного действия. В таком устройстве ротор выполнен в форме диска, на поверхности которого предусмотрены многочисленные отверстия. Они глухие, с определенным диаметром и глубиной. Количество ячеек зависит от частоты электрического тока и, следственно, вращения ротора.

Статор в теплогенераторе представляет собой цилиндр, запаянный с обоих концов, в котором вращается ротор. Зазор между диском ротора и стенками статора составляет около 1,5 мм.

Ячейки ротора нужны чтобы в толще струи жидкости, которая постоянно трется о поверхности подвижного и статического цилиндра, возникали завихрения для образования кавитационных полостей. В этом же зазоре и происходит нагрев жидкости. Для эффективной работы теплогенератора поперечный размер ротора должен быть не менее 30 см, при этом определяется скорость вращения 3000 оборотов за минуту. Если сделать ротор меньшего диаметра, тогда следует увеличить число оборотов.

При всей кажущейся простоте отработка четкого действия всех частей роторного теплогенератора требуется довольно точная, включая балансировку подвижного цилиндра. Нужно уплотнение роторного вала с постоянной заменой вышедших из строя изоляционных материалов.

Коэффициент полезного действия подобных генераторов не является впечатляющим, работа сопровождается шумовым эффектом. Срок их службы непродолжителен, хотя они работают на 25% производительнее статических моделей теплогенераторов.

Статический генераторный насос

Наименование статического теплогенератора оборудование получило условно, что связано с отсутствием деталей вращательного действия. Чтобы создать кавитационные процессы в жидкости применяют конструкцию из сопел.

Воссоздание явления кавитации требует обеспечения высокой скорости перемещения воды, для чего применяют мощный насос центробежного принципа. Насос придает повышенное давление потоку воды, которая устремляется во входное отверстие сопла. Выходной диаметр сопла гораздо уже предыдущего и жидкость получает дополнительную энергию движения, скорость ее увеличивается. На выходе из сопла из-за быстрого расширения воды получаются кавитационные эффекты с образованием полостей газа внутри тела жидкости. Прогревание воды происходит по тому же принципу, что и в роторной модели, только эффективность несколько снижена.

Теплогенераторы статического действия имеют ряд преимуществ перед роторными моделями:

  • конструкция статорного прибора не требует принципиально точной балансировки и подгонки деталей ;
  • механическая подготовительная операция не требует четкой шлифовки;
  • из-за отсутствия подвижных деталей гораздо меньше изнашиваются уплотнительные материалы;
  • эксплуатация оборудования более длительная, до 5 лет;
  • в условиях прихода в негодность сопла, его замена потребует меньше затрат, чем в роторном варианте теплогенератора, который нужно воссоздать заново.

Технология работы теплогенератора отопления

Насос повышает давление воды и подает его в рабочую камеру, патрубок которой соединен с ним при помощи фланца.

В рабочем корпусе вода должна получить увеличенную скорость и давление, что осуществляется при помощи труб различного диаметра, сужающихся по ходу потока. В центре рабочей камеры происходит смешение нескольких напорных потоков, приводящее к явлению кавитации.

Чтобы можно было контролировать скоростные характеристики водного потока, на выходе и ходе рабочей полости устанавливают тормозные устройства.

Вода передвигается к патрубку в противоположном конце камеры, откуда поступает в возвратном направлении для повторного использования при помощи насоса циркуляционного действия. Нагрев и получение тепла происходит за счет движения и резкого расширения жидкости на выходе из узкого отверстия сопла.

Положительные и отрицательные свойства теплогенераторов

Кавитационные насосы относят к простым устройствам. В них происходит преобразование механической двигательной энергии воды в тепловую, которая расходуется на отопление помещения. Прежде чем построить кавитационный агрегат своими руками следует отметить плюсы и минусы такой установки. К положительным характеристикам относят:

  • эффективное образование тепловой энергии;
  • экономный в работе за счет отсутствия топлива как такового;
  • доступный вариант приобретения и изготовления своими руками.

Теплогенераторы имеют недостатки:

  • шумная работа насоса и явления кавитации;
  • материалы для производства не всегда достать просто;
  • использует приличную мощность для помещения в 60– 80 м2;
  • занимает много полезного пространства комнаты.

Изготовление теплогенератора своими руками

Список деталей и приспособлений для создания генератора тепла:

  • для измерения давления на входе и выходе из рабочей камеры нужны два манометра;
  • термометр измерения температуры входной и вытекающей жидкости;
  • вентиль для удаления воздушных пробок из системы отопления;
  • входной и выходной патрубки с кранами;
  • гильзы под термометры.

Выбор насоса циркуляционного действия

Для этого нужно определиться с требуемыми параметрами устройства. Первой характеристикой является возможность работы насоса с высокотемпературными жидкостями. Если пренебречь таким условием, то насос быстро выйдет из строя.

Далее нужно выбрать рабочее давление, которое может создавать насос.

Для теплогенератора достаточно, чтобы при входе жидкости сообщалось давление в 4 атмосферы, можно поднять такой показатель до 12 атмосфер, что увеличит скорость нагрева жидкости.

Производительность насоса существенного влияния на скорость нагрев оказывать не будет, так как при работе жидкость проходит через условно узкий диаметр сопла. Обычно транспортируется до 3–5 кубических метров воды в час. Гораздо большее влияние на работу теплогенератора будет иметь коэффициент перехода электричества в тепловую энергию.

Изготовление кавитационной камеры

Классическим примером является выполнение приспособление в виде сопла Лаваля, которое модернизируется мастером, изготовляющим генератор своими руками. Особое внимание следует уделить выбору размера сечения проходного канала. Оно должно обеспечить максимальный перепад давления жидкости. Если устроить наименьший диаметр, то вода будет вылетать из сопла под большим давлением, и процесс кавитации будет происходить более активно.

Но в таком случае будет уменьшен поток воды, что приведет к смешиванию ее с холодными массами. Маленькое отверстие сопла также работает на увеличение числа воздушных пузырьков, что увеличивает шумовой эффект работы и может привести к тому, что пузырьки начнут образовываться уже в камере насоса. Это уменьшит срок его службы. Наиболее приемлемым, как показала практика, считается диаметр 9– 16 мм.

По форме и профилю сопла бывают цилиндрической, конусной и закругленной формы. Однозначно нельзя сказать, какой выбор будет более эффективным, все зависит от остальных параметров установки. Главное, чтобы вихревой процесс возникал, уже на этапе начального входа жидкости в сопло.

Читайте также  Как наклеить гипсокартон на стену видео

Изготовление водяного контура

Предварительно следует составить схематично протяженность контура и его особенности, все это перенести на пол мелом. Принципиально о контуре можно сказать, что он представляет собой изогнутую трубу, которая присоединяется к выходу их кавитационной камеры, а потом жидкость подается снова на вход. В качестве дополнительных приборов подсоединяются два манометра, две гильзы, в которые устанавливают термометр. Также в контуре присутствует вентиль для сбора воздуха.

Вода в контуре поступает против часовой стрелки. Для регулирования давления ставим вентиль между входом и выходом. Применяется труба диаметром 50, что характерно для совпадения с размером патрубков.

Старые модели теплогенераторов работали без установки сопел, повышение напора воды было предусмотрено за счет разгона воды в трубопроводе достаточно большой протяженности. Но в нашем случае не стоит применять слишком большую длину труб.

Испытание генератора

Насос подключают к электричеству, а радиаторы — к системе отопления. После того как оборудование установлено, можно приступить к испытаниям. Осуществляем включение в сеть и двигатель начинает работу. При этом стоит обратить внимание на показание манометров давления и установить нужную разницу с помощью вентиля между входом и выходом воды. Разница атмосфер должна быть в диапазоне от 8 до 12 атмосфер.

После этого пускаем воду и наблюдаем за температурными параметрами. Достаточным будет нагревание в системе за десять минут на 3–5ºС за минуту. За небольшой промежуток времени нагрев достигает 60ºс. Наша система вместе с насосом запитана 15 литрами воды. Этого вполне достаточно для эффективной работы.

Для применения в быту теплогенераторов достаточно немного желания и навыков сборщика, так как все устройства применяются в готовом виде. А эффективность не заставит себя ждать.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector