Как работает лазерный диод

Как работает лазерный диод

Как работает лазерный диод

Лазерные диоды: принцип работы, виды и применение

Изобретение полупроводникового лазерного диода заслуженно считается одним из лучших достижений в области физики второй половины прошлого века. Независимые разработки советских и американских ученых в области оптического излучения твердотельных материалов, проведенные более полувека назад, сегодня показывают свою эффективность в бытовой, промышленной и военной сфере.
В отличие от светоизлучающих диодов, работа которых основана на спонтанном излучении фотонов, лазерные диоды имеют более сложный принцип действия и структуру кристалла.

Принцип работы

Чтобы понять, откуда появляются фотоны, рассмотрим процесс рекомбинации (исчезновения пары свободных носителей – электрона и дырки). При подаче прямого напряжения к p-n переходу диода возникает инжекция, т.е. резкое увеличение концентрации неравновесных носителей. В процессе инжекции, движущиеся навстречу друг другу, электроны и дырки рекомбинируют, выделяя энергию в виде частицы – фотона и квазичастицы – фонона. Так происходит спонтанное излучение, наблюдаемое в светодиодах.

В случае с лазерным диодом вместо спонтанного необходимо запустить механизм вынужденного излучения фотонов с одинаковыми параметрами. Для этого из кристалла формируют оптический резонатор, проходя через который, фотон с заданной частотой вынуждает рекомбинировать электронные носители, что способствует появлению новых фотонов той же поляризации и фазы. Их называют когерентными.

При этом лазерная генерация возможна только в случае наличия чрезмерно большого количества электронных носителей на верхнем энергетическом уровне, высвобожденных в результате инжекции. Для этого используют ток накачки такой силы, чтобы вызвать инверсию электронных населённостей. Под этим явлением подразумевают состояние, в котором верхний уровень намного больше заселён электронами, чем нижний. В результате стимулируется излучение когерентных фотонов.

Далее такие фотоны многократно отражаются от граней оптического резонатора, провоцируя запуск положительной обратной связи. Это явление носит лавинообразный характер, в результате которого рождается лазерный луч. Таким образом, создание любого оптического генератора, в том числе лазерного диода, требует выполнения двух условий:

  • наличие когерентных фотонов;
  • организация положительной оптической обратной связи (ПООС).

Чтобы сформированный луч не рассеивался вследствие дифракции, прибор компонуют собирающей линзой. Тип устанавливаемой линзы зависит от вида лазера.

Виды лазерных диодов

За годы развития устройство лазерного диода претерпело множество изменений. Его конструкция совершенствовалась, во многом благодаря появлению высокотехнологичного оборудования. Высочайшая точность легирования и полировки полупроводникового кристалла, а также создание гетероструктурной модели – факторы, которые обеспечили высокий коэффициент отражения на границе «кристалл-воздух» и формирование когерентного излучения.

Первый лазерный диод (диод с гомоструктурой) имел один p-n переход и мог работать исключительно в импульсном режиме из-за быстрого перегрева кристалла. Он имеет лишь историческое значение и не применяется на практике.

Более эффективным оказался лазерный диод с двойной гетероструктурой (диод ДГС). Его кристалл создан на основе двух гетероструктур. Каждая гетероструктура – это материал (арсенид галлия и арсенид алюминия-галлия) с малой шириной запрещённой зоны, который расположен между слоями с большей шириной запрещенной зоны. Преимущество лазерного диода ДГС состоит в существенном увеличении концентрации разнополярных носителей в тонком слое, что значительно ускоряет проявление положительной обратной связи. К тому же отражение фотонов от гетеропереходов ведёт к снижению их концентрации в области низкого усиления, а значит, повышает эффективность всего устройства.

Лазерный диод с квантовыми ямами устроен по принципу диода ДГС, но с более тонкой активной областью. Это означает, что элементарные частицы, попадая в такую потенциальную яму, начинают двигаться в одной плоскости. Эффект квантования в данном случае заменяет потенциальный барьер и служит генератором излучения.

Недостаточная эффективность удержания светового потока в диодах ДГС привела к созданию гетероструктурного лазера с раздельным удержанием. В этой модели кристалл дополнительно покрывается слоем материала с каждой из сторон. Несмотря на меньший коэффициент преломления этих слоёв, они уверенно удерживают частицы, выступая в роли световода. Технология SCH занимает лидирующую позицию в производстве диодных лазеров.

Лазерный диод с распределённой обратной связью (РОС) является частью оптического оборудования в сфере построения телекоммуникационных систем. Длина волны РОС лазера является константой, что достигается путем нанесения поперечной насечки на полупроводник в области p-n-перехода. Насечка выполняет функцию дифракционной решётки, тем самым возвращая в резонатор фотоны только с одной (заданной) длиной волны. Эти когерентные фотоны и участвуют в усилении.

Поверхностно-излучающий лазерный диод с вертикальным резонатором или вертикально-излучающий лазер ВИЛ (англ. – VCSEL) в отличие от ранее рассмотренных приборов испускает луч света перпендикулярно поверхности кристалла. В основе конструкции VCSEL лежит метод использования вертикальных оптических микрорезонаторов с зеркалами, а также достижения метода ДГС и квантовой ямы. Преимущество технологии VCSEL состоит в температурной и радиационной стабильности, в возможности группового производства кристаллов и их тестирования непосредственно на стадии изготовления.

Модификацией VCSEL является ВИЛ с внешним резонатором (англ. – VECSEL). Оба лазерных диода позиционируются как приборы высокого быстродействия с возможностью обеспечения передачи данных в будущем на скорости до 25 Гбит/с через волоконно-оптическую связь.

Разновидности корпусов

Популяризация лазерных диодов вынуждала производителей самостоятельно разрабатывать новые типы корпусов. С учетом их специфического назначения компании выпускали всё новые и новые виды защиты и охлаждения кристалла, что привело к отсутствию унификации. В настоящее время не существует международных стандартов, регламентирующих корпуса лазерных диодов.
Пытаясь навести порядок, крупные производители заключают между собой договор об унификации корпусов. Однако перед практическим применением неизвестного лазерного диода всегда следует уточнять назначение выводов и длину волны излучения, невзирая на знакомый тип корпуса. Среди промышленно выпускаемых полупроводниковых лазеров наиболее часто встречаются два вида с указанными ниже корпусами.
1 Приборы с открытым оптическим каналом:

  • TO-can (transistor-out-line metal-can package). Корпус выполнен из металла и применяется в изготовлении транзисторов;
  • C-mount;
  • D-mount.

2 Приборы с волоконным выходом:

  • DIL (Dual-In-Line);
  • DBUT (Dual-Butterfly);
  • SBUT (Single-Butterfly).

Применение

Каждый тип лазерного диода находит практическое применение, ввиду своих уникальных особенностей. Стоимость маломощных образцов снизилась в разы, о чём свидетельствует их применение в детских игрушках и указках. Ими оснащают лазерные рулетки-дальномеры, что позволяет одному человеку проводить замер расстояний и сопутствующие вычисления. На красных лазерах основана работа считывателей штрих-кодов, компьютерных манипуляторов и DVD-проигрывателей. Некоторые виды используют в проведении научных исследований и для накачки других лазеров. Наиболее востребованы лазерные диоды для передачи данных в оптоволоконных сетях. Новые модели VCSEL обеспечивают скорость в 10 Гбит/с, что открывает дополнительные возможности для комплекса телекоммуникационных услуг, в том числе:

  • способствуют росту скорости интернета;
  • улучшению телефонной и видеосвязи;
  • повышают качество телевизионного приёма.

Результатом совершенствования лазерного диода стал увеличенный срок службы, который теперь сопоставим с наработкой на отказ светоизлучающих диодов. Уменьшение тока накачки повысило надёжность приборов, а их вклад в развитие технического прогресса не меньше, чем у других электронных компонентов.

Все о Лазерах

Вы все любите лазеры. Я то знаю, я от них тащусь больше вашего. А если кто не любит – то он просто не видел танец сверкающих пылинок или как ослепи- тельный крошечный огонек прогрызает фанеру

А началось все со статьи из Юного техника за 91-й год о создании лазера на красителях – тогда повторить конструкцию для простого школьника было просто нереально… Сейчас к счастью с лазерами ситуация проще – их можно доставать из сломанной техники, их можно покупать готовые, их можно собирать из деталей… О наиболее приближенных к реальности лазерах и пойдет сегодня речь, а также о способах их применения. Но в первую очередь о безопасности и опасности.

Почему лазеры опасны

Проблема в том, что параллельный луч лазера фокусируется глазом в точку на сетчатке. И если для зажигания бумаги надо 200 градусов, для повреждения сетчатки достаточно всего 50, чтобы кровь свернулась. Вы можете точкой попасть в кровеносный сосуд и закупорить его, можете попасть в слепое пятно, где нервы со всего глаза идут в мозг, можете выжечь линию «пикселей»… А потом поврежденная сетчатка может начать отслаиваться, и это уже путь к полной и необратимой потере зрения. И самое неприятное –вы не заметите по началу никаких повреждений: болевых рецепторов там нет, мозг достраивает предметы в поврежденных областях (так сказать ремапинг битых пикселей), и лишь когда поврежденная область становится достаточно большой вы можете заметить, что предметы пропадают при попадании в неё. Никаких черных областей в поле зрения вы не увидите – просто кое-где не будет ничего, но это ничего и не заметно. Увидеть повреждения на первых стадиях может только офтальмолог.

Опасность лазеров считается исходя из того, может ли он нанести повреждения до того как глаз рефлекторно моргнет – и считается не слишком опасной мощность в 5мВт для видимого излучения. Потому инфракрасные лазеры крайне опасны (ну и отчасти фиолетовые – их просто очень плохо видно) – вы можете получить повреждения, и так и не увидеть, что вам прямо в глаз светит лазер.

Потому, повторюсь, лучше избегать лазеров мощнее 5мВт и любых инфракрасных лазеров.

Также, никогда и ни при каких условиях не смотрите «в выход» лазера. Если вам кажется что «что-то не работает» или «как-то слабовато» — смотрите через вебкамеру/мыльницу (только не через зеркалку!). Это также позволит увидеть ИК излучение.

Есть конечно защитные очки, но тут много тонкостей. Например на сайте DX есть очки против зеленого лазера, но они пропускают ИК излучение- и наоборот увеличивают опасность. Так что будьте осторожны.

PS. Ну и я конечно отличился один раз – нечаянно себе бороду лазером подпалил ;-)

650нм – красный

Это пожалуй наиболее распространенный на просторах интернета тип лазера, а все потому, что в каждом DVD-RW есть такой, мощностью 150-250мВт (чем больше скорость записи – тем выше). На 650нм чувствительность глаза не очень, потому хоть точка и ослепительно яркая на 100-200мВт, луч днем лишь едва видно (ночью видно конечно лучше). Начиная с 20-50мВт такой лазер начинает «жечь» — но только в том случае, если можно менять его фокус, чтобы сфокусировать пятно в крошечную точечку. На 200 мВт жгет очень резво, но опять же нужен фокус. Шарики, картон, серая бумага…

Покупать их можно готовые (например такой на первом фото красный). Там же продаются мелкие лазерчики «оптом» — настоящие малютки, хотя у них все по взрослому – система питания, настраиваемый фокус — то что нужно для роботов, автоматики.

И главное – такие лазеры можно аккуратно доставать из DVD-RW (но помните, что там еще инфракрасный диод есть, с ним нужно крайне аккуратно, об этом ниже). (Кстати, в сервис-центрах бывает негарантийные DVD-RW кучами лежат — я себе унес 20 штук, больше не донести было). Лазерные диоды очень быстро дохнут от перегрева, от превышения максимального светового потока – мгновенно. Превышение номинального тока вдвое (при условии не превышения светового потока) сокращает срок службы в 100-1000 раз (так что аккуратнее с «разгоном»).

Питание: есть 3 основных схемы: примитивнейшая, с резистором, со стабилизатором тока (на LM317, 1117), и самый высший пилотаж – с использованием обратной связи через фотодиод.

В нормальных заводских лазерных указках применяется обычно 3-я схема – она дает максимальную стабильность выходной мощности и максимальный срок службы диода.

Вторая схема – проста в реализации, и обеспечивает хорошую стабильность, особенно если оставлять небольшой запас по мощности (

10-30%). Именно её я бы и рекомендовал делать – линейный стабилизатор – одна из наиболее популярных деталей, и в любом, даже самом мелком радиомагазине есть аналоги LM317 или 1117.

Самая простая схема с резистором описанная в предыдущей статье – лишь чуть-чуть проще, но с ней убить диод элементарно. Дело в том, что в таком случае ток/мощность через лазерный диод будет сильно зависеть от температуры. Если например при 20C у вас получился ток 50мА и диод не сгорает, а потом во время работы диод нагреется до 80С, ток возрастет (такие они коварные, эти полупроводники), и достигнув допустим 120мА диод начинает светить уже только черным светом. Т.е. такую схему все-таки можно использовать, если оставить по меньшей мере трех-четырехкратный запас по мощности.

И на последок, отлаживать схему стоит с обычным красным светодиодом, а припаивать лазерный диод в самом конце. Охлаждение обязательно! Диод «на проводочках» сгорит моментально! Также не протирайте и не трогайте руками оптику лазеров (по крайней мере >5мВт) — любое повреждение будет «выгорать», так что продуваем грушей если нужно и все.

А вот как выглядит лазерный диод вблизи в работе. По вмятинам видно, как близок я был к провалу, доставая его из пластикового крепления. Это фото также не далось мне легко

532нм – зеленый

Устроены они сложно – это так называемые DPSS лазеры: Первый лазер, инфракрасный на 808nm, светит в кристалл Nd:YVO4 – получается лазерное излучение на 1064нм. Оно попадает на кристалл «удвоителя частоты» — т.н. KTP, и получаем 532нм. Кристаллы все эти вырастить непросто, потому долгое время DPSS лазеры были чертовски дороги. Но благодаря ударному труду китайских товарищей, теперь они стали всполне доступны — от 7$ штука. В любом случае, механически это сложные устройства, боятся падений, резких перепадов температур. Будьте бережными.

Основной плюс зеленых лазеров – 532нм очень близко к максимальной чувствительности глаза, и как точка, так и сам луч очень хорошо видны. Я бы сказал, 5мВт зеленый лазер светит ярче, чем 200мВт красный (на первой фото как раз 5мВт зеленый, 200мВт красный и 200мВт фиолетовый). Потому, я бы не рекомендовал покупать зеленый лазер мощнее чем 5мВт: первый зеленый я купил на 150мВт и это настоящая жесть – с ним ничего нельзя сделать без очков, даже отраженный свет слепит, и оставляет неприятные ощущения.

Также у зеленых лазеров есть и большая опасность: 808 и особенно 1064нм инфракрасное излучение выходит из лазера, и в большинстве случаев его больше чем зеленого. В некоторых лазерах есть инфракрасный фильтр, но в большинстве зеленых лазеров до 100$ его нет. Т.е. «поражающая» способность лазера для глаза намного больше, чем кажется — и это еще одна причина не покупать зеленый лазер мощнее чем 5 мВт.

Жечь зелеными лазерами конечно можно, но нужны мощности опять же от 50мВт + если вблизи побочный инфракрасный луч будет «помогать», то с расстоянием он быстро станет «не в фокусе». А учитывая как он слепит – ничего веселого не выйдет.

405нм – фиолетовый

Это уже скорее ближний ультрафиолет. Большинство диодов – излучают 405нм напрямую. Проблема с ними в том, что глаз имеет чувствительность на 405нм около 0.01%, т.е. пятнышко 200мВт лазера кажется дохленьким, а на самом деле оно чертовски опасное и ослепительно-яркое – сетчатку повреждает на все 200мВт. Другая проблема – глаз человека привык фокусироваться «под зеленый» свет, и 405нм пятно всегда будет не в фокусе – не очень приятное ощущение. Но есть и хорошая сторона – многие предметы флуоресцируют, например бумага – ярким голубым светом, только это и спасает эти лазеры от забвения массовой публики. Но опять же, с ними не так весело. Хоть 200мВт жгут будь здоров, из-за сложности фокусировки лазера в точку это сложнее чем с красными. Также, к 405нм чувствительны фоторезисты, и кто с ними работает, может придумать зачем это может понадобиться ;-)

780нм – инфракрасный

Такие лазеры в CD-RW и как второй диод в DVD-RW. Проблема в том, что глаз человека луч не видит, и потому такие лазеры очень опасны. Можно сжечь себе сетчатку и не заметить этого. Единственный способ работать с ними – использовать камеру без инфракрасного фильтра (в веб камерах её легко достать например) – тогда и луч, и пятно будет видно. ИК лазеры применять пожалуй можно только в самодельных лазерных «станочках», баловаться с ними я бы крайне не рекомендовал.

Также ИК лазеры есть в лазерных принтерах вместе со схемой развертки — 4-х или 6-и гранное вращающееся зеркало + оптика.

10мкм – инфракрасный, CO2

Это наиболее популярный в промышленности тип лазера. Основные его достоинства – низкая цена(трубки от 100-200$), высокая мощность (100W — рутина), высокий КПД. Ими режут металл, фанеру. Гравируют и проч. Если самому хочется сделать лазерный станок – то в Китае(alibaba.com) можно купить готовые трубки нужной мощности и собрать к ним только систему охлаждения и питания. Впрочем, особые умельцы делают и трубки дома, хоть это очень сложно (проблема в зеркалах и оптике – стекло 10мкм излучение не пропускает – тут подходит только оптика из кремния, германия и некоторых солей).

Применения лазеров

В основном – используют на презентациях, играют с кошками/собаками (5мвт, зеленый/красный), астрономы указывают на созвездия (зеленый 5мВт и выше). Самодельные станки – работают от 200мВт по тонким черным поверхностям. CO2 лазерами режут почти все, что угодно. Вот только печатную плату резать трудно – медь очень хорошо отражает излучение длиннее 350нм (потому на производстве, если очень хочется – применяют дорогущие 355nm DPSS лазеры). Ну и стандартное развлечение на YouTube – лопание шариков, нарезка бумаги и картона – любые лазеры от 20-50мВт при условии возможности фокусировки в точку.

Из более серьёзного — целеуказатели для оружия(зеленый), можно дома делать голограммы (полупроводниковых лазеров для этого более чем достаточно), можно из пластика, чувствительного к УФ печатать 3Д-объекты, можно экспонировать фоторезист без шаблона, можно посветить на уголковый отражатель на луне, и через 3 секунды увидеть ответ, можно построить лазерную линию связи на 10Мбит… Простор для творчества неограничен

Так что, если вы еще думаете, какой-бы купить лазер – берите 5мВт зеленый :-) (ну и 200мВт красный, если хочется жечь)

Все о работе и подключении диодного лазера

Изначально лазеры представляли собой громоздкие конструкции, состоящие из множества сложных и хрупких узлов. С появлением полупроводниковых элементов размеры и возможности лазеров значительно изменились. Основу конструкции стал составлять лазерный диод, к которому требовалось лишь подвести соответствующее питание.

Получить лазерный луч стало возможно не только в научно-производственных, но и в бытовых условиях. В результате этих изменений появилось множество устройств, использующих лазер в прикладных целях. Областью применения стали:

  • техника;
  • медицина;
  • измерительные устройства;
  • в качестве декоративной подсветки.

Приведенный список не является исчерпывающим, поскольку разработки новых устройств и аппаратуры с использованием подобных технологий ведутся постоянно. Рассмотрим особенности конструкции и принцип функционирования лазерного диода.

Принцип работы и особенности конструкции

Принцип работы лазерного диода основан на эффекте рекомбинации фотонов при прохождении p-n перехода. Если организовать достаточно продолжительное расположение электрона и дырки в непосредственной близости друг от друга, выделяется энергия, представленная фотоном. Подобный процесс, запущенный в стабильном режиме, вызовет появление постоянного свечения.

Основным элементом лазерного диода является полупроводниковый кристалл малой толщины с легированными слоями, образующими p и n области. При подаче напряжения на анод начинается активное выделение фотонов, что внешне определяется как устойчивое свечение.

Полупроводниковая пластинка (кристалл) имеет большую площадь по сравнению с толщиной. Фотон, проходя через нее, многократно отразится от верхнего и нижнего слоев, каждый раз вызывая образование новых фотонов. Этот процесс позволяет получить стабильный пучок света, который остается только сфокусировать с помощью линзы.

Важно! Приведенное описание несколько упрощено, но принцип действия элемента передает вполне достоверно. На практике используются разные конструкции, с помощью которых производители пытались избавиться от различных нежелательных эффектов, усилить световой пучок и снизить потери мощности на нагрев или на преодоление сопротивления материала.

Разновидности

Вариантов конструкции лазерных диодов довольно много. Они отличаются друг от друга расположением p-n переходов, конфигурацией полупроводникового элемента и прочими особенностями. Существуют следующие виды:

  • диод с p-n гомоструктурой. Одна из первых конструкций, которая сегодня практически не встречается. Нуждается в подаче высокой начальной мощности и прерывании входного сигнала для исключения перегрева;
  • с двойной гетероструктурой. Представляют собой кристалл малой толщины, заключенный между двух дополнительных слоев, усиливающих поток фотонов и расширяющих активную область;
  • с квантовыми ямами. Они образованы благодаря уменьшению среднего слоя элементов с двойной гетероструктурой. Возникают квантовые ямы с разными энергетическими уровнями, которые играют роль барьера при p-n переходе, способного к выделению фотонов;
  • гетероструктурные элементы с раздельным удержанием. Большинство лазерных диодов изготовлены по этой технологии. Ее особенностью является нанесение дополнительных слоев на тонкий центральный кристалл, результатом чего становится эффективное формирование и концентрация светового пучка;
  • с распределением обратной связи. В области p-n перехода делается специальная насечка, обеспечивающая создание дифракционной решетки. Это позволяет стабилизировать длину волны, способствуя получению более устойчивого светового луча. Используются в сфере телекоммуникаций, а также в оптических устройствах разного типа;
  • VCSEL. Это лазер, относящийся к элементам поверхностного излучения. Оснащен вертикальным резонатором, благодаря которому направление луча изменяется — если у остальных видов кристаллов свет движется параллельно граням, то в данной конструкции он излучается в перпендикулярном направлении. Существует еще одна модификация такого элемента — VECSEL. Он обладает практически аналогичной конфигурацией, только с внешним резонатором.
Читайте также  Как подключить два роутера через кабель

Современные разновидности лазеров демонстрируют высокие эксплуатационные качества, но производители не прекращают разработки новых, более совершенных моделей и конструкций.

Излучение с какой длиной волны может производить лазерный диод

Единицей измерения длины волны лазерного диода является нанометр (нм). С изменением длины волны меняется цвет светового луча, что позволяет изготавливать лазеры с разным цветом пучка (в светотехнике часто используются многоцветные конструкции). Наиболее распространенные лазеры имеют следующие длины волны:

  • 650 нм (красный луч). Чаще всего применяется в дисководах, лазерных указках малого радиуса действия, в лазерных строительных уровнях и т.п. луч красного цвета воспринимается как довольно слабый, тусклый, но это только кажущееся ощущение. При увеличении мощности такого луча до 200 мВт можно резать плотную бумагу;
  • 532 нм (зеленый луч). Устройства, излучающие поток такого типа. Отличаются хрупкостью и чувствительностью к перепадам температуры. До недавнего времени они стоили значительно дороже других видов лазеров. В то же время, зеленый луч лучше всего воспринимается человеческими органами зрения, что позволяет применять его в строительных лазерах. Даже в солнечную погоду зеленый луч хорошо различается на поверхностях, в отличие от красного, более тусклого потока. Примечательно, что в силу особенностей конструкции вместе с зеленым лучом такие устройства излучают и инфракрасный, что создает определенную опасность для человека. Поэтому устройства мощнее 5 мВт промышленностью не выпускаются;
  • 405 нм (фиолетовый луч). Невооруженным глазом воспринимается слабо, что вызывает у человека ощущение маломощности потока. На деле ситуация прямо противоположна — луч обладает большой мощностью и интенсивностью, способен нанести органам зрения серьезные травмы;
  • 780 нм (инфракрасный луч). Опасен для человека своей невидимостью, совмещенной с мощным воздействием на органы зрения;
  • 1000 нм. Это также инфракрасный луч, который используется в промышленных лазерах для резки листовых материалов разного типа.

Внимание! Выбирая лазерный диод того или иного цвета, важно понимать, что это устройство самостоятельное, имеющее весьма мало общего со светодиодной осветительной техникой. У них разные цели и специфика использования, поэтому критериями выбора станут совершенно другие соображения.

Если для светодиодов важны яркость и цветовая температура, то для лазера главным моментом будет мощность и длина световой волны. Поэтому и подход к выбору этих устройств должен быть своим для каждого вида.

Как подключить

Особенностью лазерного диода является высокая потребность в стабилизированном напряжении питания. В момент перехода на кристалле наблюдается кратковременное увеличение мощности из-за малой площади, увеличивающей концентрацию энергии в данной точке. Это делает необходимым использование специального стабилизатора — драйвера.

Кроме того, напрямую к драйверу элемент тоже нельзя подключать — необходимо использовать токоизмерительный резистор, который включается в разрыв между лазером и драйвером. При этом исчезает электрическое соединение минуса питания с общим минусом схемы. Дополнительным недостатком является неизбежная потеря мощности на резисторе.

Источником тока для лазера могут служить разные устройства:

  • батарейка;
  • аккумулятор;
  • сетевое напряжение 220 В через специальный блок питания.

Два первых варианта способны обеспечить достаточно стабильное напряжение питания, но оно постоянно уменьшается, что также недопустимо. Если используется блок питания стандартного типа, ситуация несколько улучшается, хотя в этом случае нужна качественная защита от пробоя или выхода блока из строя.

При таком подключении используют дополнительные схемы защиты и стабилизаторы, устраняющие всплески и помехи от сетевых скачков. Использование обычного диодного мостика в данном случае не подходит, так как через стандартные выпрямители проходит масса паразитных колебаний и помех.

Драйвер для лазерного диода

Существует две основные конструкции драйверов для лазерного диода:

  • импульсный. Это одна из разновидностей импульсного преобразователя напряжения. Способен работать как на понижение, так и на повышение выходного напряжения относительно входного значения. Мощность на входе приближается к показателям на выходе, разница между ними образована некоторыми потерями на нагрев проводников;
  • линейный. Как правило, он получает от схемы большее напряжение, чем номинал полупроводника. Разницу обычно компенсируют с помощью транзистора, который излишки энергии отдает в виде тепла. КПД линейных драйверов невысок, что является причиной ограниченного применения.

Важно! Для каждого вида драйверов используется и собственная схема подключения, учитывающая специфику самого драйвера, источника питания и токоограничивающего резистора.

Основные выводы

Лазерные диоды широко используются в разных областях техники и в качестве декоративных установок, светотехнических устройств. В быту их знают довольно ограниченно — как лазерные указки, целеуказатели, строительные уровни и прочие устройства. Особенности конструкции и возможности этих элементов находятся в стадии изучения и разработки. Специалисты считают, что использование лазеров пока недостаточно широко, но перспективы у них весьма высоки. В своих комментариях вы можете высказать собственные мысли о конструкции и свойствах лазерных диодов.

Лазерный диод: подключение светодиодного лазера

Изначально лазеры представляли собой громоздкие конструкции, состоящие из множества сложных и хрупких узлов. С появлением полупроводниковых элементов размеры и возможности лазеров значительно изменились. Основу конструкции стал составлять лазерный диод, к которому требовалось лишь подвести соответствующее питание.

Получить лазерный луч стало возможно не только в научно-производственных, но и в бытовых условиях. В результате этих изменений появилось множество устройств, использующих лазер в прикладных целях. Областью применения стали:

  • техника;
  • медицина;
  • измерительные устройства;
  • в качестве декоративной подсветки.

Приведенный список не является исчерпывающим, поскольку разработки новых устройств и аппаратуры с использованием подобных технологий ведутся постоянно. Рассмотрим особенности конструкции и принцип функционирования лазерного диода.

Принцип работы и особенности конструкции

Принцип работы лазерного диода основан на эффекте рекомбинации фотонов при прохождении p-n перехода. Если организовать достаточно продолжительное расположение электрона и дырки в непосредственной близости друг от друга, выделяется энергия, представленная фотоном. Подобный процесс, запущенный в стабильном режиме, вызовет появление постоянного свечения.

Основным элементом лазерного диода является полупроводниковый кристалл малой толщины с легированными слоями, образующими p и n области. При подаче напряжения на анод начинается активное выделение фотонов, что внешне определяется как устойчивое свечение.

Полупроводниковая пластинка (кристалл) имеет большую площадь по сравнению с толщиной. Фотон, проходя через нее, многократно отразится от верхнего и нижнего слоев, каждый раз вызывая образование новых фотонов. Этот процесс позволяет получить стабильный пучок света, который остается только сфокусировать с помощью линзы.

Важно! Приведенное описание несколько упрощено, но принцип действия элемента передает вполне достоверно. На пpaктике используются разные конструкции, с помощью которых производители пытались избавиться от различных нежелательных эффектов, усилить световой пучок и снизить потери мощности на нагрев или на преодоление сопротивления материала.

Разновидности

Вариантов конструкции лазерных диодов довольно много. Они отличаются друг от друга расположением p-n переходов, конфигурацией полупроводникового элемента и прочими особенностями. Существуют следующие виды:

  • диод с p-n гомоструктурой. Одна из первых конструкций, которая сегодня пpaктически не встречается. Нуждается в подаче высокой начальной мощности и прерывании входного сигнала для исключения перегрева;
  • с двойной гетероструктурой. Представляют собой кристалл малой толщины, заключенный между двух дополнительных слоев, усиливающих поток фотонов и расширяющих активную область;
  • с квантовыми ямами. Они образованы благодаря уменьшению среднего слоя элементов с двойной гетероструктурой. Возникают квантовые ямы с разными энергетическими уровнями, которые играют роль барьера при p-n переходе, способного к выделению фотонов;
  • гетероструктурные элементы с раздельным удержанием. Большинство лазерных диодов изготовлены по этой технологии. Ее особенностью является нанесение дополнительных слоев на тонкий центральный кристалл, результатом чего становится эффективное формирование и концентрация светового пучка;
  • с распределением обратной связи. В области p-n перехода делается специальная насечка, обеспечивающая создание дифpaкционной решетки. Это позволяет стабилизировать длину волны, способствуя получению более устойчивого светового луча. Используются в сфере телекоммуникаций, а также в оптических устройствах разного типа;
  • VCSEL. Это лазер, относящийся к элементам поверхностного излучения. Оснащен вертикальным резонатором, благодаря которому направление луча изменяется — если у остальных видов кристаллов свет движется параллельно граням, то в данной конструкции он излучается в перпендикулярном направлении. Существует еще одна модификация такого элемента — VECSEL. Он обладает пpaктически аналогичной конфигурацией, только с внешним резонатором.

Читайте также Хаpaктеристики и основные отличия подсветки WLED

Современные разновидности лазеров демонстрируют высокие эксплуатационные качества, но производители не прекращают разработки новых, более совершенных моделей и конструкций.

Излучение с какой длиной волны может производить лазерный диод

Единицей измерения длины волны лазерного диода является нанометр (нм). С изменением длины волны меняется цвет светового луча, что позволяет изготавливать лазеры с разным цветом пучка (в светотехнике часто используются многоцветные конструкции). Наиболее распространенные лазеры имеют следующие длины волны:

  • 650 нм (красный луч). Чаще всего применяется в дисководах, лазерных указках малого радиуса действия, в лазерных строительных уровнях и т.п. луч красного цвета воспринимается как довольно слабый, тусклый, но это только кажущееся ощущение. При увеличении мощности такого луча до 200 мВт можно резать плотную бумагу;
  • 532 нм (зеленый луч). Устройства, излучающие поток такого типа. Отличаются хрупкостью и чувствительностью к перепадам температуры. До недавнего времени они стоили значительно дороже других видов лазеров. В то же время, зеленый луч лучше всего воспринимается человеческими органами зрения, что позволяет применять его в строительных лазерах. Даже в солнечную погоду зеленый луч хорошо различается на поверхностях, в отличие от красного, более тусклого потока. Примечательно, что в силу особенностей конструкции вместе с зеленым лучом такие устройства излучают и инфpaкрасный, что создает определенную опасность для человека. Поэтому устройства мощнее 5 мВт промышленностью не выпускаются;
  • 405 нм (фиолетовый луч). Невооруженным глазом воспринимается слабо, что вызывает у человека ощущение маломощности потока. На деле ситуация прямо противоположна — луч обладает большой мощностью и интенсивностью, способен нанести органам зрения серьезные травмы;
  • 780 нм (инфpaкрасный луч). Опасен для человека своей невидимостью, совмещенной с мощным воздействием на органы зрения;
  • 1000 нм. Это также инфpaкрасный луч, который используется в промышленных лазерах для резки листовых материалов разного типа.

Внимание! Выбирая лазерный диод того или иного цвета, важно понимать, что это устройство самостоятельное, имеющее весьма мало общего со светодиодной осветительной техникой. У них разные цели и специфика использования, поэтому критериями выбора станут совершенно другие соображения.

Если для светодиодов важны яркость и цветовая температура, то для лазера главным моментом будет мощность и длина световой волны. Поэтому и подход к выбору этих устройств должен быть своим для каждого вида.

Как подключить

Особенностью лазерного диода является высокая потребность в стабилизированном напряжении питания. В момент перехода на кристалле наблюдается кратковременное увеличение мощности из-за малой площади, увеличивающей концентрацию энергии в данной точке. Это делает необходимым использование специального стабилизатора — драйвера.

Кроме того, напрямую к драйверу элемент тоже нельзя подключать — необходимо использовать токоизмерительный резистор, который включается в разрыв между лазером и драйвером. При этом исчезает электрическое соединение минуса питания с общим минусом схемы. Дополнительным недостатком является неизбежная потеря мощности на резисторе.

Источником тока для лазера могут служить разные устройства:

  • батарейка;
  • аккумулятор;
  • сетевое напряжение 220 В через специальный блок питания.

Два первых варианта способны обеспечить достаточно стабильное напряжение питания, но оно постоянно уменьшается, что также недопустимо. Если используется блок питания стандартного типа, ситуация несколько улучшается, хотя в этом случае нужна качественная защита от пробоя или выхода блока из строя.

При таком подключении используют дополнительные схемы защиты и стабилизаторы, устраняющие всплески и помехи от сетевых скачков. Использование обычного диодного мостика в данном случае не подходит, так как через стандартные выпрямители проходит масса паразитных колебаний и помех.

Драйвер для лазерного диода

Существует две основные конструкции драйверов для лазерного диода:

  • импульсный. Это одна из разновидностей импульсного преобразователя напряжения. Способен работать как на понижение, так и на повышение выходного напряжения относительно входного значения. Мощность на входе приближается к показателям на выходе, разница между ними образована некоторыми потерями на нагрев проводников;
  • линейный. Как правило, он получает от схемы большее напряжение, чем номинал полупроводника. Разницу обычно компенсируют с помощью транзистора, который излишки энергии отдает в виде тепла. КПД линейных драйверов невысок, что является причиной ограниченного применения.

Важно! Для каждого вида драйверов используется и собственная схема подключения, учитывающая специфику самого драйвера, источника питания и токоограничивающего резистора.

Основные выводы

Лазерные диоды широко используются в разных областях техники и в качестве декоративных установок, светотехнических устройств. В быту их знают довольно ограниченно — как лазерные указки, целеуказатели, строительные уровни и прочие устройства. Особенности конструкции и возможности этих элементов находятся в стадии изучения и разработки. Специалисты считают, что использование лазеров пока недостаточно широко, но перспективы у них весьма высоки. В своих комментариях вы можете высказать собственные мысли о конструкции и свойствах лазерных диодов.

Как работает лазерный диод

  • Главная
  • Магазин
  • Начинающим
  • Лазерные указки
  • Фотографии
  • Написать статью
  • Форум

Категории

  • L.O.R.: Reborn
  • Безопасность
  • Красные лазеры
  • Лазерные указки
  • Лазерные шоу
  • Мощные лазеры
  • Начинающим
  • Прочее
  • Теория
  • Фиолетовые лазеры
  • Электроника и различные опыты
  • Свежие записи

    • Как сделать лазер и что для этого нужно знать
    • Как выбрать лазерный проектор?
    • Сборка фиолетового лазера для новичков
    • Светодиодное освещение, или как сделать преобразователь для 6 светодиодных прожекторов по 10Вт
    • FAQ для новичков по лазерным диодам и приборам на их основе
  • Свежие комментарии

    • Виктор Левченко к записи Инфракрасный лазер 5000мВт 808нм
    • Джинчурики Десятихвостого Удзумаки Наруто к записи Голография, часть 2
    • Артем к записи Опыт создания лазера из DVD-RW привода Артёмом Калининым
    • Артём Доценко к записи Опыт создания лазера из DVD-RW привода Артёмом Калининым
    • Алексей Гришин к записи Профессиональное лазерное шоу своими руками
  • Лазерные проекторы

    FAQ для новичков по лазерным диодам и приборам на их основе

    В своем роде некро-пост, некро-FAQ №2. Этот FAQ был написан пользователем форума n.r.j. Он собрал в одной записи ответы на все вопросы которые возникают у новичков, так как много новичков задают одни и тех же вопросы и не всегда пользуются поиском, и обьяснил все поверхностно, не вдаваясь в детали, на понятном языке, но достаточно для быстрого старта в лазеростроении.

    Вступление

    Полное название современных полупроводниковых лазеров: «полупроводниковые инжекционные гетеролазеры». Сюда входят:

    — лазерные диоды и линейки на их основе, в том числе с фотодиодами обратной связи импульсного или непрерывного режима работы с выводом излучения непосредственно, или через волокно, или через интегратор;

    — излучатели лазеров импульсного режима работы, представляющие собой импульсный трансформатор тока с лазерным диодом во вторичной обмотке;

    — собственно лазеры, представляющие собой интегральный драйвер, нагрузкой которого является лазерный диод. Для импульсного режима работы — это генератор импульсов тока накачки. Для непрерывного режима работы это генератор постоянного тока.

    Лазерный диод имеет вольт-амперную характеристику диодного типа, но «построен» не на обычном p-n переходе, как первые гомо-лазеры, а на гетеропереходах, которые выполняют функции:

    — эмиттеров для носителей заряда, одновременно локализуя их в активной области;

    — оптического волновода для излучения.

    Как это работает:

    Ток накачки создаёт инверсную населённость носителей заряда в энергетических зонах полупроводниковового материала активной области:

    — электронов — в зоне проводимости;

    — дырок — в валентной зоне.

    Процесс их рекомбинации начинается спонтанно, возможно с одной единственной пары. Но фотон, родившийся при этом, многократно проходит через оптический резонатор, образованный зеркалами активной области, буквально обрушивая электроны в валентную зону, где и происходит рекомбинация, которая носит лавинный характер, когда все рекомбинирующие пары одновременно, т.е. с одной фазой, рождают фотоны. Эти фотоны также многократно проходят через оптический резонатор, создавая таким образом положительную обратную связь, являющуюся непременным условием генерации. По сути лазеры правильнее называть оптическими квантовыми генераторами, т.к. они не усиливают свет (light amplification …), а генерируют его. Усилением света занимаются суперлюминесцентные светодиоды.

    Лазерные структуры, из которых в последствии изготавливаются лазерные кристаллы, выращивают различными методами эпитаксии, как правило на подложках n-типа. Профиль будущих кристаллов формируется различными методами:

    Омические контакты и припои наносятся на эпитаксиальную пластину ещё до её разделения на кристаллы.

    Зеркала оптических резонаторов не шлифуют и не полируют, а получают методом скалывания по плоскостям естественного скалывания, которые есть в любом монокристалле. Для того, чтобы зеркала были строго перпендикулярны к слоям лазерной структуры, монокристалл ориентируют перед резкой на подложки по кристаллографическим направлениям с помощью рентгеновских лучей.

    Излучение с заднего зеркала если и используется, то для фотодиода обратной связи. В других случаях на него напыляют отражающие покрытия.

    Для облегчения выхода излучения с переднего зеркала на него напыляют просветляющие плёнки.

    Типы корпусов лазерных диодов можно посмотреть ТУТ

    Красные (длина волны около 650нм) и инфракрасные (ИК) (780нм) диоды можно достать из пишущих DVD приводов. Так же можно использовать и пишущие CD приводы (в них есть только мощный ИК), или DVD Combo.

    Список приводов содержащих подходящий для конструирования лазера можно посмотреть ТУТ В таблице далеко не все приводы которые подойдут.

    Обратите внимание на колонку №4 в таблице там указана скорость записи и ток которым нужно питать диоды, чем эти показатели выше, тем ярче будет светить диод (выше мощность). Опять же, если вы достали ЛД из привода, которого нет в списке, ориентируйтесь примерно так: для диода из дисковода со скоростью записи 16х желательно не подавать больше 250-260мА, для 18х — 300-350мА, 20-22х — 400-500мА, и пожалуйста опубликуйте етот привод в соответсвующей теме.

    Как правильно извлечь диод из привода надете ТУТ

    Фиолетовый (405нм) диод вы найдете в Blue-Ray приводах.

    Чтобы получить синий (445нм) лучше всего поучаствовать в Груповых закупках

    Инфракрасные 808нм диоды вы можете приобрести в МАГАЗИНЕ (их как правило используют в зеленых лазерах для накачки склейки кристаллов)

    Лазеры с другими длинами волн излучения построены по технологии DPSS. Что расшифровывается как Твердотельный Лазер с Диодной Накачкой, т.е нужную длину волны излучает активный элемент, который в свою очередь накачивается ЛД. Желтых лазерных диодов пока не встречалось, зеленые в природе существуют но стоят космических денег. — спасибо за правку nERVу.

    Пример. Как работает зеленый(532нм) DPSS лазер:

    В составе установке находятся такие компоненты, как ИК ЛД 808нм, кристалл вандата иттрия, кристалл KTP, зеркала. Кристаллы находятся в «едином» резонаторе, т.е между зеркалами с различной пропускающей и отражающей способностью для разных длин волн.

    Ик излучение с длиной волны 808нм от мощного ЛД проходя через зеркало резонатора вызывает генерацию излучения с длиной волны 1064нм в кристалле вандата иттрия легированного ионами неодима. В свою очередь это излучение проходя через кристалл КТР удваивается, проходит через выходное зеркало и мы видим зеленый лазерный луч.

    Желтое, синее, голубое излучение получают примерно также, но с другими кристалами и зеркалами. КПД преобразования оптической мощности такого метода составляет около 20%.

    Тоесть для того чтобы получить зеленый лазер 100 миливатт нужно 500 мВт ИК диода. Следует вывод что в лазере ручке попросту не может функционировать зелень более 100мВт. Не лоханитесь при покупке!

    До недавнего времени мощные синие лазеры были построены таким же способом, пока в дело не вмешалась компания CASIO с новыми проэкторами А140 и подобными где находятся диоды 445нм 1000 мВт.

    Собираем лазер

    Ну диод у нас уже есть, дальше собираем драйвер.

    Драйвер — это электронная схема, которая контролирует питание диода, без нее он сгорит, отсутствие ее даже не обсуждается!

    Самый простой найдете ТУТ

    Лазерный диод не светит прямым пучком, он светит конусом и его надо фокусировать, а фокусировать нужно коллиматором, как по мне идеальный выбор модули AIXIZ, сразу получаете и коллиматор и примитивное охлаждение в одном флаконе. Купить можноТУТ

    Но также можно использовать линзы из DVD для фокусирования на небольшем растоянии. А призмочки для разных экспериментов. Но будте предельно аккуратны — вы не можете быть полностью уверены в том что посветив в призму луч не отразится вам в глаз, что грозит слепотой!

    Если же вы собрались делать монстра 1Вт и более, нужно подумать про охлажнение.

    Давайте посчитаем: Напряжение 4.2 В Ток около 1.1 А

    4.2Х1.1=4.6 Вт, а луч

    1 Вт А куда делось еще 3.6 Вт? А они ушли на нагрев. Температура губительна для диода, кроме того чем выше температура тем ниже мощность, поэтому тепло надо отводить. Идем на радиорынок и покупаем подержанный радиатор для процесора сверлим в нем дырку под AIXIZ, впрессовываем туда модуль предварительно смазав его термопастой. И вообще советую перечитать вот Эту тему.

    Читайте также  Как выглядит виноградный лист

    А также не эксплуатируйте лазер на морозе! Так как при низкой температуре мощность лазера ростет и может стать критической, тогда лазерный диод сгорит.

    В конце хочу добавить:

    Если вы делаете лазер на продажу для начала перечитайте эту тему, реальная история которая случилась со мной. Сложившаяся ситуация стояла мне кучи нервов и здоровья не вчем не повинного человека. Мне очень повезло, что я так отделался, реально все могло кончится небом в клеточку друзьями в полосочку, занесением судимости в личное дело, а как следствие невозможностью нейдти нормальную роботу и испорченной жизнью. Подумайте дважды.

    А дальше все упирается в вашу фантазию, так что дерзайте!

    Внимание! Лазер опасен для зрения! Купите защитные очки! Но всеравно дерзайте!

  • Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

    Adblock
    detector