Как перемотать трансформатор от компьютерного блока питания

Как перемотать трансформатор от компьютерного блока питания

Как перемотать трансформатор от компьютерного блока питания

Как перемотать трансформатор из блока питания ПК

Перед тем как начать перемотку трансформатора, его нужно разобрать. О простом методе разборки импульсного трансформатора из блока питания ПК можно прочитать тут.

Итак, разобрали трансформатор. Далее нужно нам разобраться для чего или подо что мы будем перематывать импульсный трансформатор.

Можно перемотать трансформатор для самого блока питания ПК, делается это для того, чтобы повысить выходное напряжение, при переделке БП ПК в регулируемый. В данном случае можно первичную обмотку оставить родной. Чаще всего, первичная обмотка импульсных трансформаторов из БП ПК разделена на две части. То есть, сначала мотается половина первичной обмотки, потом мотаются вторичные обмотки и сверху мотается вторая половина первичной обмотки. Так же, первичные полуобмотки могут иметь экран, в виде медной фольги.

Так вот, разматывая родные вторичные обмотки, можно посчитать количество витков, далее перемотать вторичную обмотку уже на несколько витков больше и восстановить верхнюю половину первичной обмотки. Тем самым мы сэкономим лакированный провод.

Лично я при переделке блоков питания ПК в регулируемый перематываю первичную и вторичную обмотки с нуля, пересчитывая их в программе Lite-CalcIT. При новом расчете следует учесть тот факт, что частота ШИМ у блоков питания ПК 30-36 кГц.

Приведу пример расчета и намотки импульсного трансформатора на сердечнике от БП ПК.

Скачиваем и запускаем программу Lite-CalcIT. Вбиваем нужные нам напряжения и диаметры обмоточных проводов. Также указываем схему преобразования и схему выпрямления. Частота преобразования в моем случае 50 кГц, если трансформатор рассчитывается для переделки БП ПК в регулируемый, то следует указать частоту преобразования 30 кГц, иначе из-за малого количества витков, сердечник войдет в насыщение и по первичной обмотке начнет протекать очень большой ток холостого хода.

Вторичных обмотки будет две, с отводом от середины. Номинальное напряжение указывается для одной обмотки. В моем расчете номинальное напряжение стоит 32 Вольта, это значит, что после выпрямления, относительно среднего вывода мы получим +32 Вольта и -32 Вольта. Так как я рассчитываю трансформатор под импульсный источник питания УНЧ, то мне нужно двухполярное питание +-32 Вольта, соответственно схема выпрямления указана двухполярной, со средней точкой.

Если рассчитывать трансформатор под переделку БП ПК, то ничего в программе менять не нужно, за исключением частоты (30 кГц), то есть будем иметь также две вторичных обмотки. Единственное, что изменится, это схема выпрямления, она будет однополярная со средней точкой.

Далее указываем габариты и другие параметры сердечника, добытого из БП ПК.

Ничего в расчете сложного нет. В ходе него я получил следующие параметры:

— Число витков первичной обмотки 38;

-Число витков вторичной обмотки 10+10 двумя жилами указанного провода.

Начинаем мотать транс.

38 Витков первичной обмотки в один слой не влезут на мой каркас, поэтому мотать буду в два слоя по 18 витков.

Подпаиваем к контакту провод и мотаем 18 витков, один к другому. Если смотреть на каркас сверху, то мотаю по часовой стрелке все обмотки.

Далее кладу слой изоляции. Изоляцию использую, какая есть, либо лавсановая пленка из ненужных обрезков витой пары, либо скотч.

После чего, не меняя направления, мотаем к основанию каркаса еще 18 витков, один к другому. Припаиваем контакт.

Кладем изоляцию. Все, первичка готова.

Пример намотки первичной обмотки на частоту 30 кГц.

По расчетам я получил количество витков первичной обмотки, равное 48. В первый слой я положил 35 витков.

Далее слой изоляции и остальные 13 витков, равномерно расположенных по всей длине каркаса.

Изолируем первичную обмотку от вторичной.

P.S. Если в один слой не влезает расчетное количество витков, то можно разделить на две равные половины, или мотать в один слой такое количество витков, которое влезет на всю длину каркаса. Остальное количество витков, которое не влезло, распределяем равномерно по всей длине каркаса сердечника.

Мотаем вторичную обмотку импульсного трансформатора.

Подпаиваем два провода к выводу нашего транса от БП ПК.

Мотаем в ту же сторону, что и первичную обмотку (в моем случае по часовой стрелке), 10 витков.

Оставляем хвост и изолируем.

Далее подпаиваем еще два провода к другим контактам.

Мотаем еще 10 витков, но уже в противоположную сторону предыдущей обмотки.

Теперь давайте разберемся, если нам отвод от середины не был бы нужен, то мы мотали бы от основания до верха по часовой стрелке 10 витков, потом слой изоляции, и далее в том же направлении еще 10 витков до основания каркаса.

В принципе можно и с отводом от середины так мотать, кому как удобней короче.

P.S. Обмотки должны быть намотаны, как можно симметрично и равномерно распределены по каркасу. Если полуобмотки получаться несимметричными, то будет разное напряжение в плечах.

Едем дальше. Опять изолируем вторичку, хотя крайнюю обмотку можно не изолировать, так лучше проходит охлаждение трансформатора.

Косу, которая получилась, перед скручиванием необходимо зачистить от лака. Далее скрутить и залудить. При желании можно надеть термоусадку.

Как разобрать импульсный трансформатор

Работая над своим новым проектом у меня возникла необходимость перемотать трансформатор с ферритовым магнитопроводом от импульсного блока питания под нужные мне напряжения. Покупать каркас и феррит мне не очень хотелось, поскольку в моей кладовке полно неисправных компьютерных блоков питания из которых легко достать необходимый для моей самоделки трансформатор. Клея китайцы не пожалели, залили на совесть и на века… Думали разбирать никто не будет. Наши Кулибины все разберут, перемотают и опять соберут.

Технология разборки очень простая надо сильно нагреть ферритовый магнитопровод до 300°С, клей хорошенько размякнет и аккуратно расшатывая вытаскиваем половинки феррита из каркаса. Делать надо быстро и аккуратно, обязательно в перчатках, не дожидаясь охлаждения магнитопровода, иначе клей снова намертво прилипнет. Я решил использовать паяльную станцию предварительно выставил 300°С на терморегуляторе. Можно использовать строительный фен или положить трансформатор ферритом на сковородку. Скажу честно, пока научился расколол пять трансформаторов.

Аккуратно извлеките очень хрупкий ферритовый магнитопровод из каркаса.

Кусачками откусите медные обмотки и размотайте.

Остатки медного провода следует удалить паяльником.

Готовый к намотке каркас с ферритовым магнитопроводом.

Чтобы намотать новые обмотки на каркас я использую самодельный станок для намотки трансформаторов.

Обычно импульсные трансформаторы мотают в одну сторону виток к витку. Каждый слой во избежание пробоя изолируется специальной изолирующей лентой. К сожалению её не возможно достать в моем городе, поэтому каждый слой я изолирую обыкновенным скотчем, наматываю в три слоя.

Выводы обмоток надо хорошо пропаять.

В заключение хочу сказать пару слов про ферритовые магнитопроводы. Для чего в некоторых импульсных трансформаторах в ферритовых магнитопроводах делают небольшой немагнитный зазор? Для того, чтобы уменьшить индукцию и увеличить накачку трансформатора, что положительно влияет на выходную мощность устройства. Все зависит от схемы, устройства бывают однотактные или двухтактные. Магнитопровод для однотактника делают с зазором, а для двухтактника без, последние имеют большую выходную мощность по сравнению с первыми. На этой картинке с левой стороны вы увидите магнитопровод с немагнитным зазором, а с правой стороны без зазора.

Как сделать немагнитный зазор если магнитопровод без него? Достаточно вырезать из картона пару кружочков и приклеить супер клеем к центральному стержню Ш образного магнитопровода. Толщина картонных прокладок подбирается опытным путем, при настройке девайса надо добиться максимальной выходной мощности при минимальном потреблении электроэнергии. После сборки трансформатора приклейте феррит супер клеем к каркасу.

Друзья, желаю вам хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как разобрать импульсный трансформатор.

Пошаговая инструкция по перемотке импульсного трансформатора

Трансформатор представляет собой преобразователь переменного напряжения или же гальванической развязки. Благодаря устройству исходное напряжение преобразуется в конечное, которое требуется для работы конкретного электроприбора. Ведь для каждого электрического прибора требуется определенное напряжение. К примеру, если оно большое, прибор может сгореть, а низкое, то он не сможет работать. В каких случаях требуется перемотка конкретного импульсного трансформатора, и для чего она нужна?

  1. Как правильно разобрать
  2. Определение назначения перемотки
  3. Методика и пример расчета
  4. Как правильно мотать
  5. Выбор сердечника
  6. Намотка первичной обмотки
  7. Намотка вторичной обмотки
  8. Завершение и проверка
  9. Советы и рекомендации

Как правильно разобрать

Несмотря на то, что с виду трансформатор кажется сложным устройством, его разборка достаточно проста в исполнении. Главная задача в данном случае, это удаление поверхностной оболочки, состоящей из ферритового магнитопровода.

Для этого требуется подогреть феррит до 300 0 С и расшатывая имеющиеся половинки вытянуть их из каркаса. Делать это нужно быстро, чтобы размягченный клей не успел застыть. Такую процедуру нужно производить обязательно в перчатках. Далее потребуется:

  • откусить кусачками прикрепленные медные обмотки;
  • размотать проволоку до самого основания;
  • устранить на каркасе оставшиеся кусочки обмотки.

Всего несколько шагов и каркас трансформатора полностью очищен. Главная сложность заключается в разогреве ферритовой оболочки. Но в данном случае можно воспользоваться несколькими советами. Например, использовать строительный фен, паяльную станцию или же подогреть на сковородке.

Определение назначения перемотки

В случае, когда причиной поломки, к примеру, компьютерного оборудования стал выход из строя трансформатор, то можно произвести его перемотку, а не покупать новый компьютер. Основанием для осуществления перемотки могут быть:

  • имеющееся число витков не соответствует установленным нормам;
  • при осуществлении монтажа были допущены ошибки;
  • в ходе эксплуатации нарушались обозначенные правила;
  • допущены дефекты непосредственно при заводском изготовлении оборудования.

Чтобы проверить работу трансформатора, следует разобрать блок питания и осмотреть устройство, нет ли на нем видимых повреждений.

Если таковых нет, то стоит проверить первичную и вторичную обмотку.

Методика и пример расчета

Одним из простых способов произвести расчет относительно намотки проводки на импульсный трансформатор считается использование специальных программ. Благодаря чему, можно выяснить сколько витков нужно будет сделать, и какие материалы лучше для этого использовать. К примеру, можно привести такой расчет:

  1. Если за основу брать частоту преобразования 50кГц, это в том случае, когда трансформатор будет переделываться для БП ПК, то в программе нужно отметить показатели в значении 30кГц.
  2. Затем требуется обозначить габариты, и соответственно параметры сердечника.

Согласно данным программы, то получается число витков должно составить 38 для первой обмотки. Что касается второй обмотки, то число витков составит 10+10 двумя жилами обозначенного провода. Также следует сказать, что в случае, если основа трансформатора небольшая и число витков не помещается в один слой, то можно сделать наматывание провода в два слоя, но по одинаковому количеству витков. В непременном порядке их нужно будет изолировать от вторичной намотки.

Не менее важным параметром считается то, что нужно учитывать количество наматываемого провода. То есть, когда наматывается второй слой, количество провода увеличивается, поэтому не стоит откусывать указанный в расчете метраж.

Как правильно мотать

Перед тем, как начать мотать трансформатор следует помнить, что эта работа кропотливая, если работа будет производиться вручную. Все дело в том, что витки должны плотно прилегать друг другу. Наилучшим вариантом будет использование при помощи примитивного прибора, который можно сделать самостоятельно. Также нужно сказать, что наматывать провод нужно исключительно на основе расчетов. То есть, точное количество витков непосредственно в одном слое.

Каждый слой должен быть отделен от следующего ряда витков специальной изоляционной лентой. Если таковой нет, то можно использовать тонкую, но плотную бумагу.

К примеру, можно использовать кальку. Зачастую обмотка составляет три слоя, и каждый из них должен быть изолирован друг от друга. По окончанию процесса намотки выводы проводки нужно качественно припаять.

Важно знать! Используемый изоляционный материал должен быть не только плотным, но важно чтобы он не имел повреждений. Обусловлено это тем, чтобы исключить вероятность замыкания.

Выбор сердечника

Что касается выбора сердечника, то с целью экономии можно использовать старый. Если требуется использовать новый, то он должен быть изготовлен из соответствующего материала. К примеру, для персонального компьютера подойдут сердечники на основе аморфных магнитных сплавов.

Намотка первичной обмотки

Изначально нужно подготовить все соответствующие материалы. Это каркас трансформатора, провод требуемого диаметра и изоляционный материал. Начинать обмотку следует с самого края сердцевины, желательно наматывание осуществлять по часовой стрелке. Витки должны быть ровными и плотно прилегающими друг к другу. Не должно быть никаких зазоров. Не стоит забывать производить соответственную изоляцию между слоями.

Намотка вторичной обмотки

Вторичная намотка осуществляется по тому же принципу, что и первичная. По окончанию намотки непременно нужно оставить хвостик провода, который необходимо заизолировать. После требуется припаять его к соответствующим контактам.

Важно знать! Витки первого слоя требуется отделять между собой одним слоем изоляционного материала, который промазывается клеем.

Между первичным и вторичным слоем намотки следует сделать изолирование не менее чем из 4-5 слоев. Таким образом можно избежать пробоев и соответственно короткого замыкания в переделанном трансформаторе.

Завершение и проверка

После того, как была выполнена намотка провода и проведены изоляционные работы в непременном порядке нужно произвести проверку. Важно это сделать до того, как начнет засыхать клей. Данная процедура проводится для проверки собранного трансформатора.

  1. Одним из способов считается использование омметра. Обозначенным прибором можно установить целостность проводника, проверка осуществляется между выводами одной обмотки. Нужно напомнить о мерах безопасности, то есть произвести отключение всех концов импульсного трансформатора.
  2. Чтобы выполнить проверку на вероятность межвиткового замыкания, то следует использовать вольтметр. В данном случае трансформатор должен быть подключен к напряжению. В случае, если слышно потрескивание или устройство искриться, то нужно срочно отключить его.

Также проверку можно производить амперметром. Замеры требуется осуществлять в первичной и вторичной обмотках. Значения должны показывать не меньше номинального.

Советы и рекомендации

Перед тем, как производить перемотку импульсного трансформатора нужно учесть некоторые нюансы. Главными из них считаются:

  1. Если трансформатор издает гул, то это не является причиной неисправности. В некоторых специфических устройствах, это считается нормальным.
  2. В случае возникновения искр или треска, то это явная неисправность.
  3. Работа обмоток может изменяться не из-за наличия неисправностей, а при банальной загрязненности устройства. Исправить это можно зачисткой контактов.

В качестве рекомендации нужно сказать, что запрещается подсоединять к обмоткам постоянное напряжение, поскольку используемый провод для обмотки просто оплавится. Важно перед началом перемотки произвести соответствующие замеры, которые позволят выполнить работу качественно. Научиться этому достаточно просто, но нужно быть аккуратным и выполнять все обозначенные рекомендации.

Намотка трансформатора для импульсного источника питания

В процессе изготовления блока питания наткнулся на практически полное отсутствие информации о том как наматывать импульсный трансформатор: по часовой или против часовой стрелки, обмотки должны быть намотаны в одну сторону или в разные? В этой статье привожу свои умозаключения по этому поводу. Надеюсь представленная здесь информация будет полезна.

Так как это мой персональный блог, то позволю себе сделать лирическое отступление и рассказать о своих страданиях в данной области, несмотря на то, что один мой коллега как-то заметил: «Никого не интересует как ты сделал это. Главное — результат!».

Захотел я как-то собрать импульсный блок питания. Схему взял с радиокота. За схему автору спасибо!

Мотивировался простотой и подробностью описания схемы — вплоть до изображения намотки трансформатора. Однако как показала практика, и этого оказалось недостаточно…

К моему большому сожалению с первого раза схема не заработала должным образом — напряжение на выходе скакало от 3 до 5 вольт. После непродолжительных мучений взорвалась управляющая микросхема. Причем взорвалась буквально, отлетел кусок пластикового корпуса и были видны её «мозги». Эта неудача меня не огорчила, а наоборот прибавила решительности довести дело до ума. Купив новую микросхему и намотав, на всякий случай, новый трансформатор, я повторил эксперимент. В результате на выходе напряжение отсутствовало вовсе. После перепроверки схемы я обнаружил, что не правильно впаял оптопару. Заменив на всякий случай оптопару и впаяв её правильно я подал сетевое напряжение на вход… и снова пиротехнический эффект. Микросхема снова показала свои внутренности. От досады я сгреб все в ящик стола на несколько дней. Но идея сделать этот блок питания не покинула меня.

После длительных размышлений над смыслом бытия и о том в чем могла быть ошибка я пришел к выводу — что-то не так с трансформатором. Было решено избавиться от цепи BIAS (обозначена красным на схеме), чтобы еще упростить схему, а также понять как все-таки нужно наматывать трансформатор. В результате появились такие картинки (см. ниже).

Начнем с рассмотрения первичной обмотки трансформатора.

Для упрощения рассмотрим один виток первичной обмотки. Точкой обозначено начало обмотки. Обмотку мы наматываем против часовой стрелки (можно и по часовой стрелке, никто не запрещает, но в этом случае, как мы увидим далее, вторичную тоже нужно будет мотать по часовой стрелке). На схеме блока питания более положительный потенциал подключен к концу первичной обмотки (на рисунке обозначен как «+»), а более отрицательный потенциал к началу обмотки («-» на схеме). Из курса средней или высшей школы (в моем случае высшей, т.к. физику я начал учить только в институте) мы помним, что движущиеся электрические заряды создают магнитное поле, причем направление линий индукции магнитного поля определяется правилом буравчика. Эти линии на рисунке изображены элипсами со стрелочками. Суммарное магнитное поле проходит как бы от наблюдателя, через плоскость монитора и выходит с обратной стороны. В школе нас учили обозначать вектор крестиком (Х), если мы смотрим на него сзади и точкой, если смотрим на него спереди. Таким образом обозначен суммарный вектор магнитной индукции В в центре одиночного витка.

С первичной обмоткой разобрались. А теперь, товарищи, взгляните на вторичную обмотку. Согласно правилу Ленца, в замкнутом контуре, помещенном во внешнее магнитное поле (в данном случае созданном первичной обмоткой) возникает ток, направление которого стремиться ослабить внешнее поле. Точнее внешнее поле ослабляет не сам ток, а магнитное поле, которое он создает. Это поле вторичной обмотки обозначено на рисунке маленькими элипсами. Как видно, его направление противоположно магнитному полю первичной обмотки. Это поле, согласно школьным правилам отмечено жирной точкой в центре витка. Для упрощения рисунка часть силовых линий магнитного поля В была удалена. А теперь вопрос: каким должно быть направление тока во вторичной оботке, чтобы создать магнитное поле такого направления. Правильно, ток должен идти от начала вторичной обмотке к ее концу, т.е. на начале обмотки у нас более положительный потенциал (+), а на конце — минус. Теперь смотрим на схему блока питания. Действительно, «плюс» выходного напряжения начинается с начала вторичной обмотки, а «минус» — с конца.

Желающие могут потренироваться в рисовании силовых линий магнитного поля. Лично я ими исписал несколько тетрадных листов:)

Из всего выше сказанного следует, что обе обмотки трансформатора следует мотать против часовой стрелки. Собственно автор схемы это и изобразил на рисунке. После подробного анализа мне стало ясно почему это так, а не иначе.

Ну и в качестве завершения истории… Разобравшись с этой кухней я заново спаял схему. На этот раз навесным монтажем и без цепи BIAS. Какова же была моя радость когда я у видел на дисплее мультиметра заветные 5.44В :) Думаю многим из нас знакомо это чувство.

Рассуждения представленные здесь ни в коем случае не претендуют на то чтобы быть единственно правильными. Возможно в чем-то они упрощены, но мне они показались весьма логичными, т.к. направление токов и магнитных полей полностью согласуются. А в качестве вознаграждения за проделанный труд я получил работоспособную схему. В будущем планирую повторить опыт с несколькими вторичными обмотками трансформатора. Всем спасибо за внимание!

Правильная намотка импульсного трансформатора

Из рисунка выше видно, что к двухтактным относят: мост, полумост и пуш-пул. В этих схемах зазора в сердечнике быть не должно, причем это касается не только силового трансформатора, но и ТГР.

Что касается однотактных схем, они бывают прямоходовые и обратноходовые, вот у них зазор в сердечнике должен быть обязательно, поэтому первым делом всегда необходимо более подробно ознакамливаться с тем, что вы делаете.

Для более наглядного примера в этой статье мы рассмотрим намотку 2-ух различных трансформаторов, один для двухтактной схемы, второй соответственно для однотактной.

Как видим из схемы — это полумост. Таким образом данный тип относится к разряду двухтактных схем, следовательно, как упоминалось в начале статьи — зазор в сердечнике не нужен.

Читайте также  Импульсный блок питания 100вт

С этим определились, но это еще не все. Перед намоткой необходимо произвести специальные вычисления (рассчитать трансформатор). Благо в интернете без особого труда можно найти и скачать специальные программы Владимира Денисенко для расчета трансформатора.

При включенной галочке программа автоматом накидывает пару витков на вторичку для зазора работы ШИМ.
Второе поле — это охлаждение. Если оно присутствует, то можно из трансформатора выжать больше мощности.

И последнее, но самое важное – необходимо указать какой сердечник будет использоваться при намотке данного трансформатора.



Стараемся равномерно укладывать витки, также необходимо избегать пересечение провода и различных узелков, петель и тому подобных явлений. От того как вы намотаете трансформатор зависит дальнейшая работа всего блока питания.

Мотаем ровно половину первички и делаем отвод, только не прямо на пин трансформатора, а вверх. Дальше будем мотать вторичку, а поверх неё оставшуюся первичку.

Припаиваемся к началу обмотки и равномерно виток к витку мотаем. При этом желательно чтобы вторичка поместилась в один слой. Но если же вы рассчитали на большее напряжение, то необходимо второй слой равномерно растянуть по всему каркасу.

Когда намотали слой, то опять же делаем отвод вверх и начинаем мотать вторую часть вторички. Мотается она точно так же, как и первая.

Вот тут уже стоит каким-либо образом пометить где у вас первая половина вторички и где вторая.

Следующий шаг – домотка первичной обмотки. В этом случае автор обычно оставляет себе пустой пин на печатной плате, чтобы туда можно было подключить среднюю точку первички.

Примечание для начинающих! Как правило начинающие радиолюбители делают свои первые блоки питания не стабилизированными на микросхемах типа IR2153 и постоянно сталкиваются со следующей проблемой: мол намотал на одно напряжение, а на выходе получил другое. Перемотка результатов не дает. В чем же дело? А дело в том, что необходимо проводить измерения при нагрузке как минимум 15% от номинала. А то получается, что выходной конденсатор зарядился до амплитудного значения, собственно его вы и измеряете, и не можете понять что не так.

Намотка трансформатора обратноходового блока питания ничем не отличается от предыдущего, только для расчета будем использовать уже другую программу из того же пакета программ – «Flyback – Программа расчета трансформатора обратноходового преобразователя» (Версия 8.1).


На этом все. Благодарю за внимание. До новых встреч!

Видеоролик автора:

Реинкарнация компьютерных БП. Часть 1

Те, кто уже имел дело с силовыми трансформаторами компьютерных БП, знают, что первичная обмотка трансформатора содержит около 40 витков провода, разделенных, как правило, на 2 секции, наматываемых до и после вторичной обмотки. Таким образом достигается уменьшение паразитной емкости первичной обмотки и усиливается индуктивная связь между обмотками, что важно для ШИ-возможностей БП. Суммарное же количество витков вторичных полуобмоток — 7 (3+4). Таким образом, коэффициент трансформации штатного трансформатора приблизительно равен 5,7. Для полумостовой схемы преобразователя амплитуда прямоугольных импульсов будет равна половине питающего напряжения преобразователя, т.е. — 220Х1,4/2=154В (пренебрегая падением напряжения на К-Э-переходах транзисторных ключей).

Это значит, что действующее значение «переменки» на выходе трансформатора составит приблизительно 27В. Значение выходного напряжения первой части полуобмоток (первые 3 витка от средней точки) — 11,5В. Выпрямив полученные напряжения, получим «постоянку» с приблизительными значениями, соответственно, 38 и 16 Вольт. Габаритная мощность магнитопроводов трансформаторов современных и чуть менее современных компьютерных БП составит не менее 250Вт на частотах преобразования от 30кГц. Это значит, что при расчетных выходных напряжениях мы можем расчитывать на выходной ток от 6,5 Ампер. Впечатляет? Причем все ЭТО можно получить при простой схемотехнике и незначительных усилиях при конструировании, учитывая, разумеется, отсутствие такого сервиса, как стабилизация выходных напряжений, например. А во многих случаях стабилизация и не нужна. Взамен получаем мощность, приемлемый набор выходных напряжений, позволяющий использование возрожденного БП в широком диапазоне задач (от построения лабораторного БП до питания мощных усилителей) компактность, малый вес. А эти показатели перекрывают такой минус, как отсутствие стабилизации.

У трансформаторов компьютерных БП есть один большой плюс, помимо уже замеченных в этом тексте, — стандартный установочный профиль. Это обстоятельство делает задачу разработки универсальной схемы с применением тр-ов от разных БП очень простой, равно, как и разработку печатной платы для этой схемы. Это значит, изготовление БП с подобными трансформаторами можно поставить на поток, не взирая на габаритные и мощностные различия трансформаторов. Еще один плюс силовых трансформаторов компьютерных БП — высокая надежность, обусловленная применением качественных современных ферритов, эпоксдной пропиткой, избыточным сечением обмоточных проводов. Никто из тех, кому доводилось ремонтировать компьютерные БП, не сможет, пожалуй, припомнить гибель такого трансформатора. И еще — трансформатор можно легко экранировать полоской фольги, создав КЗ-виток вокруг самого трансформатора.

Задача проста. Схема должна быть максимально простой и повторяемой при использовании трансформаторов от разных БП. Для этой цели попробуем применить трансформатор в схеме двухтактного полумостового автогенераторного преобразователя, так полюбившегося производителями электронных трансформаторов (Рис 1а) с любым из узлов запуска (Рис 1б — рис 1г).

Проще схемы, пожалуй, не бывает.

До сборки схемы по рис 1а необходимо намотать коммутирующий (управляющий) трансформатор на ферритовом кольце размером 10Х6Х3мм (наружный диаметр Х внутренний диаметр Х высота) или другом, имеющим близкие габариты из материалов 1000/1500/2000/3000НН. Можно попробовать и другие размеры и марки феррита, но следует учесть, что размеры бОльшие, чем те, что указаны, могут значительно снизить частоту коммутации, а то и вовсе привести к неспособности трансформатора к насыщению. При этом габариты трансформатора должны обеспечивать определенную мощность для создания в его обмотках тока, достаточного для открывания транзисторов. Кроме того, габариты трансформатора должны обеспечить и достаточное пространство для размещения необходимого количества витков. «Базовые» обмотки могут содержать от 3 до 10 витков медного провода диаметром не менее 0,3мм в эмалевой или любой другой изоляции. Возможно использование одножильного монтажного провода с жилой указанного диаметра. Таким же проводом наматываем и обмотку связи — 1-10 витков.

Обмотка связи в виде 1-4 витков провода делается и на «компьютерном» трансформаторе. Практически в любом трансформаторе найдется зазор между имеющимися обмотками и боковыми частями магнитопровода для нескольких дополнительных витков провода казанного сечения.
Собираем макет электрической схемы преобразователя (рис 2, рис 3), подпаиваем к схеме выводы


«компьютерного» трансформатора; к выводам его вторичной обмотки подпаиваем нагрузочный резистор, обеспечивающий небольшую, до 10Вт, потребляемую мощность (но можно и без нагрузки); параллельно любой из вторичных обмоток подключаем осциллограф и через лампу накаливания мощностью 150-200Вт подключаем схему к сети. Увидев на дисплее осциллографа импульсы правильной прямоугольной формы

и не заметив свечения нити балластной лампы, понимаем, что преобразователь — работает. Выключаем, проверяем на нагрев радиатор, на котором закреплены транзисторы (MJE13007), трансформатор. Если все эти предметы не изменили своей температуры за несколько секунд проверочного включения относительно той, что была до включения, то — продолжаем эксперементировать.

Измеряем частоту преобразования и при необходимости подбираем ее значение с помощью подбора витков обмоток связи одного из трансформаторов и резистора R3 (рис 1а). При подборе частоты указанными манипуляциями следует учесть, что при увеличении витков обмотки связи трансформатора Tr2, частота преобразования будет снижаться, а ток через резистор R3 — возрастет. Увеличение числа витков обмотки связи на Tr1 так же будет способствовать снижению частоты, равно. как и уменьшение сопротивления резистора R3. Оптимальным следует считать режим преобразования с частотой равной или большей той частоты, при которой трансформатор эксплуатировался в исходном БП. Т.е. — от 30-35кГц. Преобразователь, собранный по схеме на рис 1а, работает уверенно и на более низких частотах. Правда, продолжительность испытаний не превышала получаса для каждого варианта (см таблицу 1), а мощность нагрузки не превышала 55Вт.

При указанных в таблице 1 изменениях номиналов деталей и обмоточных данных, нагрев транзисторов, установленных на радиаторе в макете (на рис 2, 3) не превышал 40 градусов при получасе работы. Нагрев существенно может быть снижен достижением оптимального количества витков обмоток связи обоих трансформаторов. Эта же мера снизит разогрев и резистора R3. Правильный подбор витков будет способствовать и общей стабильности схемы. При испытаниях умышленно было выбрано неверное соотношение витков. О хорошем и правильном — в продолжении.

А результаты испытания ЭТОЙ схемы с трансформатором из компьютерного БП показали следующее.
1. Действующие напряжения вторичных обмоток трансформаторов (а испытывались четыре различных трансформатора от разных БП) оказались несколько выше расчетных: 11,8 — 13,6В (пятивольтовая полуобмотка разных тран-в), 28-30,5В — (двенадцативольтовая полуобмотка).

Как видно, схема — все та же, но в качестве ключей применены мощные полевые транзисторы. Выбраны были IRFP460A, т.к. просто оказались в наличии именно эти транзисторы. Обмотки коммутирующего тр-ра, разумеется, намотаны уже несколько иначе, т.к. порог открывания полевых транзисторов — 5-12В. Затворные обмотки коммутирующего трансформатора и обмотка связи содержат одинаковое количество витков — по 20 — медного провода в диаметром 0,3 в эмали. Перед наматыванием провода в эмалевой изоляции, не лишним будет окунуть магнитопровод в клей («момент» или «БФ-2») для создания изоляционного слоя поверх проводящего, в общем-то, материала магнитопровода. Габариты кольца такие-же, как и у трансформатора из предыдущей схемы. Количество витков обмотки связи силового тр-ра так же придется увеличить (3-4 витка) для создания необходимого напряжения на обмотке связи тр-ра Tr1.

Фото макета на рис 4, 5.


3. Резисторы обратной связи R3 практически не нагреваются, каких бы номиналов они ни применялись при испытании. Это обстоятельство позволяет применить в качестве R3 маломощные (от 0,25Вт) резисторы.

4. Практически отсутствует нагрев ключей. Это значит, что и площадь охлаждающих радиаторов может быть относительно небольшой, а устройство в целом — более компактным.
5. ЭТА схема по своим свойствам сопоставима со схемой на на полумостовом драйвере типа IR2151-IR2153, но имеет более высокий КПД за счет отсутствия цепей питания самого драйвера; схема меньше уязвима и менее требовательна к компоновке в отличии от схемы со специализированным драйвером.

Надеюсь, статья поможет многим переосмыслить собственные взгляды на старые компьютерные БП и сэкономить при создании таких несложных и нужных БП.

Камрад, рассмотри датагорские рекомендации

Полезные и проверенные железяки, можно брать

Опробовано в лаборатории редакции или читателями.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector