Как направлен вектор напряженности электростатического поля

Как направлен вектор напряженности электростатического поля

Как направлен вектор напряженности электростатического поля

Напряженность электрического поля

О чем эта статья:

8 класс, 10 класс

Что такое электрическое поле

Однажды Бенджамин Франклин, чей портрет можно увидеть на стодолларовой купюре, запускал воздушного змея во время дождя с грозой. Столь странное занятие он выбрал не просто так, а с целью исследования природы молнии. Заметив, что на промокшем шнуре волоски поднялись вверх (т. е. он наэлектризовался), Франклин хотел прикоснуться к металлическому ключу. Но стоило ему приблизить палец, раздался характерный треск и появились искры. Сработало электрическое поле.

Это случилось в середине XVIII века, но еще целое столетие ученые не могли толком объяснить, как именно заряженные тела взаимодействуют друг с другом, не соприкасаясь. Майкл Фарадей первым выяснил, что между ними есть некое промежуточное звено. Его выводы подтвердил Джеймс Максвелл, который установил, что для воздействия одного такого объекта на другой нужно время, а значит, они взаимодействуют через «посредника».

В современной физике электрическое поле — это некая материя, которая возникает между заряженными телами и обусловливает их взаимодействие. Если речь идет о неподвижных объектах, поле называют электростатическим.

Объекты, несущие одноименные заряды, будут отталкиваться, а тела с разноименными зарядами — притягиваться.

Определение напряженности электрического поля

Для исследования электрического поля используются точечные заряды. Давайте выясним, что это такое.

Точечным зарядом называют такой наэлектризованный объект, размерами которого можно пренебречь, поскольку он слишком мал в сравнении с расстоянием, отделяющим этот объект от других заряженных тел.

Теперь поговорим непосредственно о напряженности, которая является одной из главных характеристик электрического поля. Это векторная физическая величина. В отличие от скалярных она имеет не только значение, но и направление.

Для того, чтобы исследовать электрическую напряженность, нужно в поле заряженного тела q1 поместить еще один точечный заряд q2 (допустим, они оба будут положительными). Со стороны q1 на q2 будет действовать некая сила. Очевидно, что для расчетов нужно иметь в виду как значение данной силы, так и ее направление, то есть вектор.

Напряженность электрического поля — это показатель, равный отношению силы, действующей на заряд в электрическом поле, к величине этого заряда.

Напряженность является силовой характеристикой поля. Она говорит о том, как сильно влияние поля в данной точке не только на другой заряд, но также на живые и неживые объекты.

Единицы измерения и формулы

Из указанного выше определения понятно, как найти напряженность электрического поля в некой точке:

E = F / q, где F — действующая на заряд сила, а q — величина заряда, расположенного в данной точке.

Если нужно выразить силу через напряженность, мы получим следующую формулу:

F = q × E

Направление напряженности электрического поля всегда совпадает с направлением действующей силы. Если взять отрицательный точечный заряд, формулы будут работать аналогично.

Поскольку сила измеряется в ньютонах, а величина заряда — в кулонах, единицей измерения напряженности электрического поля является Н/Кл (ньютон на кулон).

Принцип суперпозиции

Допустим, у нас есть несколько зарядов, которые перекрестно взаимодействуют и образуют общее поле. Чему равна напряженность электрического поля, создаваемого этими зарядами?

Было установлено, что общая сила воздействия на конкретный заряд, расположенный в поле, является суммой сил, действующих на данный заряд со стороны каждого тела. Из этого следует, что и напряженность поля в любой взятой точке можно вычислить, просуммировав напряжения, создаваемые каждым зарядом в отдельности в той же точке (с учетом вектора). Это и есть принцип суперпозиции.

Это правило корректно для любых полей, за некоторыми исключениями. Принцип суперпозиции не соблюдается в следующих случаях:

расстояние между зарядами очень мало — порядка 10 -15 м;

речь идет о сверхсильных полях с напряженностью более 10 20 в/м.

Но задачи с такими данными выходят за пределы школьного курса физики.

Напряженность поля точечного заряда

У электрического поля, создаваемого точечным зарядом, есть одна особенность — ввиду малой величины самого заряда оно очень слабо влияет на другие наэлектризованные тела. Именно поэтому такие «точки» используют для исследований.

Но прежде чем рассказать, от чего зависит напряженность электрического поля точечного заряда, рассмотрим подробнее, как взаимодействуют эти заряды.

Закон Кулона

Предположим, в вакууме есть два точечных заряженных тела, которые статично расположены на некотором расстоянии друг от друга. В зависимости от одноименности или разноименности они могут притягиваться либо отталкиваться. В любом случае на эти объекты воздействуют силы, направленные по соединяющей их прямой.

Закон Кулона

Модули сил, действующих на точечные заряды в вакууме, пропорциональны произведению данных зарядов и обратно пропорциональны квадрату расстояния между ними.

Силу электрического поля в конкретной точке можно найти по формуле: где q1 и q2 — модули точечных зарядов, r — расстояние между ними.

В формуле участвует коэффициент пропорциональности k, который был определен опытным путем и представляет собой постоянную величину. Он обозначает, с какой силой взаимодействуют два тела с зарядом 1 Кл, расположенные на расстоянии 1 м.

Учитывая все вышесказанное, напряжение электрического поля точечного заряда в некой точке, удаленной от заряда на расстояние r, можно вычислить по формуле:

Итак, мы выяснили, что называется напряженностью электрического поля и от чего зависит эта величина. Теперь посмотрим, как она изображается графическим способом.

Линии напряженности

Электрическое поле нельзя увидеть невооруженным глазом, но можно изобразить с помощью линий напряженности. Графически это будут непрерывные прямые, которые связывают заряженные объекты. Условная точка начала такой прямой — на положительном заряде, а конечная точка — на отрицательном.

Линии напряженности — это прямые, которые совпадают с силовыми линиями в системе из положительного и отрицательного зарядов. Касательные к ним в каждой точке электрического поля имеют то же направление, что и напряженность этого поля.

При графическом изображении силовых линий можно передать не только направление, но и величину напряженности электрического поля (разумеется, условно). В местах, где модуль напряженности выше, принято делать более густой рисунок линий. Есть и случаи, когда густота линий не меняется — это бывает при изображении однородного поля.

Однородное электрическое поле создается разноименными зарядами с одинаковым модулем, расположенными на двух металлических пластинах. Линии напряженности между этими зарядами представляют собой параллельные прямые всюду, за исключением краев пластин и пространства за ними.

Электрическое поле. Вектор напряжённости электрического поля. Принцип суперпозиции для вектора Е.

Если в пространство, окружающее электрический заряд, внести другой заряд, то на него будет действовать кулоновская сила; значит, в пространстве, окружающем элект­рические заряды, существует силовое поле. Согласно представлениям современной физики, поле реально существует и наряду с веществом является одной из форм существования материи, посредством которого осуществляются определенные взаимо­действия между макроскопическими телами или частицами, входящими в состав вещества. В данном случае говорят об электрическом поле — поле, посредством которого взаимодействуют электрические заряды. Мы рассматриваем элект­рические поля, которые создаются неподвижными электрическими зарядами и называ­ются электростатическими.

Для обнаружения и опытного исследования электростатического поля используется пробный точечный положительный заряд — такой заряд, который не искажает исследу­емое поле (не вызывает перераспределения зарядов, создающих поле). Если в поле, создаваемое зарядом Q, поместить пробный заряд Q, то на него действует сила F, различная в разных точках поля, которая, согласно закону Кулона, пропорци­ональна пробному заряду Q. Поэтому отношение F/Q не зависит от Q и характеризу­ет электростатическое поле в той точке, где пробный заряд находится. Эта величина называется напряженностью и является силовой характеристикой электростатичес­кого поля.

Напряженность электростатического поля в данной точке есть физическая величина, определяемая силой, действующей на пробный единичный положительный заряд, помещенный в эту точку поля:

.

Напряженность поля точечного заряда в вакууме

Направление вектора Е совпадает с направлением силы, действующей на положитель­ный заряд. Если поле создается положительным зарядом, то вектор Е направлен вдоль радиуса-вектора от заряда во внешнее пространство (отталкивание пробного положи­тельного заряда); если поле создается отрицательным зарядом, то вектор Е направлен к заряду (рис.).

Единица напряженности электростатического по­ля — ньютон на кулон (Н/Кл): 1 Н/Кл — напряженность такого поля, которое на точечный заряд 1 Кл действует с силой в 1 Н; 1 Н/Кл= 1 В/м, где В (вольт) — еди­ница потенциала электростатического поля. Графически электростатическое поле изображают с помощьюлиний напряженности — линий, касательные к которым в каждой точке совпадают с направлением вектора Е (рис.).

Так как в каждой данной точке пространства вектор напряженности имеет лишь одно направление, то линии напряженности никогда не пересекаются. Дляоднородного поля (когда вектор напряженности в любой точке постоянен по величине и направлению) линии напряженности параллельны вектору напряженности. Если поле создается точечным зарядом, то линии напряженности — радиальные прямые, выходящие из заряда, если он положителен (рис.а), и входя­щие в него, если заряд отрицателен (рис.б). Вследствие большой наглядности графический способ представления электростатического поля широко применяется в электротехнике.

Чтобы с помощью линий напряженности можно было характеризовать не только направление, но и значение напряженности электростатического поля, условились про­водить их с определенной густотой: число линий напряженности, прони­зывающих единицу площади поверхности, перпендикулярную линиям напряженности, должно быть равно модулю вектора Е. Тогда число линий напряженности, пронизыва­ющих элементарную площадку dS, нормаль n которой образует угол a с вектором Е, равно Е dS cosa = EndS, где Еп—проекция вектора Е на нормаль n к площадке dS (рис.).

Величина dФЕndS=EdS называетсяпотоком вектора напряженности через площадку dS. Здесь dS = dSn — век­тор, модуль которого равен dS, а направление совпадает с направлением нормали n к площадке. Выбор направления вектора n (а следовательно, и dS) условен, так как его можно направить в любую сторону. Единица потока вектора напряженности электростатического поля — 1 В×м.

Для произвольной замкнутой поверхности S поток вектора Е сквозь эту поверх­ность

,

где интеграл берется по замкнутой поверхности S. Поток вектора Е является алгебра­ической величиной: зависит не только от конфигурации поля Е, но и от выбора направления n. Для замкнутых поверхностей за положительное направление нормали принимается внешняя нормаль, т. е. нормаль, направленная наружу области, охватыва­емой поверхностью.

К кулоновским силам применим принцип независимости действия сил, т. е. результирующая сила F, дейст­вующая со стороны поля на пробный заряд Q, равна векторной сумме сил Fi, приложенных к нему со стороны каждого из зарядов Qi: . F = QE и Fi = QЕi, где Е—напряженность результирующего поля, а Еi — напряженность поля, создаваемого зарядом Qi. Подставляя это в выражение выше, получаем . Эта формула выражает принцип суперпозиции (наложения) электростатических полей, согласно которому напряженность Е результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.

Принцип суперпозиции позволяет рассчитать электростатические поля любой си­стемы неподвижных зарядов, поскольку если заряды не точечные, то их можно всегда свести к совокупности точечных зарядов.

Принцип суперпозиции применим для расчета электростатического поля элект­рического диполя. Электрический диполь — система двух равных по модулю разноименных точечных зарядов (+Q,–Q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля. Согласно принципу суперпозиции, напряженность Е поля диполя в произ­вольной точке , где Е+ и Е– — напряженности полей, создаваемых соответственно положительным и отрицательным зарядами.

Как направлен вектор напряженности электростатического поля

По современным представлениям, электрические заряды не действуют друг на друга непосредственно. Каждое заряженное тело создает в окружающем пространстве электрическое поле . Это поле оказывает силовое действие на другие заряженные тела. Главное свойство электрического поля – действие на электрические заряды с некоторой силой. Таким образом, взаимодействие заряженных тел осуществляется не непосредственным их воздействием друг на друга, а через электрические поля, окружающие заряженные тела.

Электрическое поле, окружающее заряженное тело, можно исследовать с помощью так называемого пробного заряда – небольшого по величине точечного заряда, который не производит заметного перераспределения исследуемых зарядов.

Для количественного определения электрического поля вводится силовая характеристика напряженность электрического поля .

Напряженность электрического поля – векторная физическая величина. Направление вектора в каждой точке пространства совпадает с направлением силы, действующей на положительный пробный заряд.

Электрическое поле неподвижных и не меняющихся со временем зарядов называется электростатическим . Во многих случаях для краткости это поле обозначают общим термином – электрическое поле

Это свойство электрического поля означает, что поле подчиняется принципу суперпозиции.

Это поле называется кулоновским . В кулоновском поле направление вектора зависит от знака заряда : если , то вектор направлен по радиусу от заряда, если , то вектор направлен к заряду.

Для наглядного изображения электрического поля используют силовые линии . Эти линии проводят так, чтобы направление вектора в каждой точке совпадало с направлением касательной к силовой линии (рис. 1.2.1). При изображении электрического поля с помощью силовых линий, их густота должна быть пропорциональна модулю вектора напряженности поля.

Силовые линии кулоновских полей положительных и отрицательных точечных зарядов изображены на рис. 1.2.2. Так как электростатическое поле, создаваемое любой системой зарядов, может быть представлено в виде суперпозиции кулоновских полей точечных зарядов, изображенные на рис. 1.2.2 поля можно рассматривать как элементарные структурные единицы («кирпичики») любого электростатического поля.

В качестве примера применения принципа суперпозиции полей на рис. 1.2.3. изображена картина силовых линий поля электрического диполя – системы из двух одинаковых по модулю зарядов разного знака и –, расположенных на некотором расстоянии .

Электрическим дипольным моментом обладает, например, нейтральная молекула воды (H2O), так как центры двух атомов водорода располагаются не на одной прямой с центром атома кислорода, а под углом 105° (рис. 1.2.4). Дипольный момент молекулы воды .

Во многих задачах электростатики требуется определить электрическое поле по заданному распределению зарядов. Пусть, например, нужно найти электрическое поле длинной однородно заряженной нити (рис. 1.2.5) на расстоянии от нее.

Вектор везде направлен по радиусу Это следует из симметрии задачи. Уже этот простой пример показывает, что прямой путь определения поля по заданному распределению зарядов приводит к громоздким математическим выкладкам. В ряде случаев можно значительно упростить расчеты, если воспользоваться теоремой Гаусса, которая выражает фундаментальное свойство электрического поля.

Электростатический диполь. Электростатическое поле. Напряженность

Электрическое поле, которое окружает заряд, это реальность, независящая от нашего желания что-либо изменить и как-то повлиять на это. Отсюда можно сделать вывод, что электрическое поле является одной из форм существования материи, так же как и вещество.

Электрическое поле зарядов, находящихся в состоянии покоя, называют электростатическим. Чтобы обнаружить электростатическое поле определенного заряда нужно внести в его поле другой заряд, на который будет действовать определенная сила в соответствии с законом Кулона. Однако без наличия второго заряда электростатическое поле первого заряда существует, но никак себя не проявляет.

Напряженностью Е характеризуют электростатическое поле. Напряженность в некоторой точке электрического поля – физическая величина, которая равна силе, действующей на помещенный в определенную точку поля единичный положительный покоящийся заряд, и направленная в сторону действия силы.

Если в электрическое поле, создаваемое зарядом q, внести «пробный» положительный точечный заряд qпр, то по закону Кулона на него будет действовать сила:

Если в одну точку поля помещать различные пробные заряды q / пр, q // пр и так далее, то на каждый из них будут действовать различные силы, пропорциональные величине заряда. Отношение F/qпр для всех зарядов, вносимых в поле, будет идентичным, а также будет зависеть лишь от q и r, определяющих электрическое поле в данной точке. Данную величину можно выразить формулой:

Если предположить, что qпр = 1, то E = F. Отсюда делаем вывод, что напряженность электрического поля является его силовой характеристикой. Из формулы (2) с учетом выражения кулоновской силы (1) следует:

Из формулы (2) видно, что за единицу напряженности принимается напряженность в определенной точке поля, где на единицу заряда будет действовать единица силы. Поэтому в системе СГС единицей напряженности является дин/СГСq, а в системе СИ будет Н/Кл. Соотношение между приведенными единицами называют абсолютной электростатической единицей напряженности (СГСЕ):

Вектор напряженности направлен от заряда вдоль радиуса при образующем поле положительном заряде q+, а при отрицательном – q – по направлению к заряду вдоль радиуса.

Если электрическое поле образовано несколькими зарядами, то силы, которые будут действовать на пробный заряд, складываются по правилу сложения векторов. Поэтому напряженность системы, состоящей из нескольких зарядов, в данной точке поля будет равна векторной сумме напряженностей каждого заряда в отдельности:

Данное явление носит название принцип суперпозиции (наложения) электрических полей.

Напряженность в любой точке электрического поля двух точечных зарядов – q2 и +q1 можно найти использовав принцип суперпозиции:

По правилу параллелограмма будет происходить сложение векторов Е1 и Е2. Направление результирующего вектора Е определяется построением, а его абсолютная величина может быть вычислена с использованием формулы ниже:

Где α – угол между векторами Е1 и Е2.

Давайте рассмотрим электрическое поле, которое создает диполь. Электрический диполь – это система равных по величине (q = q1 = q2), но противоположных по знаку зарядов, расстояние между которыми очень мало, если сравнивать с расстоянием до рассматриваемых точек электрического поля.

Электрический дипольный момент p, являющийся основной характеристикой диполя и определяемый как вектор, направленный от отрицательного заряда к положительному, и равный произведению плеча диполя l на заряд q:

Также вектором является плечо диполя l, направленным от отрицательного заряда к положительному, и определяет расстояние между зарядами. Линия, которая проходит через оба заряда, носит название – ось диполя.

Давайте определим напряженность электрического поля в точке, которая лежит на оси диполя по середине (рисунок ниже а)):

В точке В напряженность Е будет равна векторной сумме напряженностей Е / и Е // , которые создаются положительными и отрицательными зарядами но отдельности. Между зарядами –q и +q векторы напряженностей Е / и Е // направлены в одну сторону, поэтому по абсолютной величине результирующая напряженность Е будет равна их сумме.

Если же нам необходимо найти Е в точке A, лежащей на продолжении оси диполя, то в разные стороны будут направлены вектора Е / и Е // , соответственно по абсолютной величине результирующая напряженность будет равна их разности:

Где r – расстояние между точкой, которая лежит на оси диполя и в которой происходит определение напряженности, и средней точкой диполя.

В случае r>>l, величиной (l/2) в знаменателе можно пренебречь, тогда получим следующее соотношение:

Где p – момент электрический диполя.

Данная формула в системе СГС примет вид:

Теперь нужно вычислить напряженность электрического поля в точке С (рисунок выше б)), лежащей на перпендикуляре, восстановленном из средней точки диполя.

Так как r1 = r2, то будет иметь место равенство:

В точке С вектор результирующей напряженности по абсолютной величине будет равен:

Так как r>>l, то можно считать r1 ≈ r, тогда представленную выше формулу можно записать в другом виде:

Напряженность диполя в произвольной точке можно определить по формуле:

Где α – угол между плечом диполя l и радиус-вектором r, r – расстояние от точки, в которой определяется напряженность поля, до центра диполя, р – электрический момент диполя.

Пример

На расстоянии R = 0,06 м друг от друга находятся два одинаковых точечных заряда q1 = q2 = 10 -6 Кл (рисунок ниже):

Необходимо определить напряженность электрического поля в точке А, которая расположена на перпендикуляре, восстановленном в центре отрезка, который соединяет заряды, на расстоянии h = 4 см от этого отрезка. Также нужно определить напряженность и в точке В, находящейся на середине отрезка, который соединяет заряды.

Решение

По принципу суперпозиции (наложением полей) определяется напряженность поля Е. Таким образом, векторной (геометрической) суммой определяется Е, создаваемых каждым зарядом в отдельности: Е = Е1 + Е2.

Напряженность электрического поля первого точечного заряда равна:

Где q1 и q2 – заряды, образующие электрическое поле; r – расстояние от точки, в которой вычисляется напряженность, до заряда; ε – электрическая постоянная; ε – относительная диэлектрическая проницаемость среды.

Для определения напряженности в точке В сначала нужно построить векторы напряженности электрических полей от каждого заряда. Поскольку заряды положительны, то векторы Е / и Е // будут направлены от точки В в разные стороны. По условию q1 = q2:

Это значит, что в средине отрезка напряженность поля равна нулю.

В точке А необходимо произвести геометрическое сложение векторов Е1 и Е2. В точке А напряженность будет равна:

Определение вектора напряженности электрического поля: что характеризует

  • Вектор напряженности электрического поля — что из себя представляет
    • Основная характеристика
  • Определение параметров электрического поля
  • Какое направление имеет вектор, как определить
  • Поток вектора напряженности, применение теоремы Гаусса

Вектор напряженности электрического поля — что из себя представляет

В 1831 году Майкл Фарадей установил закон электромагнитной индукции, обнаружив, что меняющееся во времени магнитное поле порождает электрическое. Выяснилось, что первично электромагнитное поле, а электрические и магнитные поля — различные его проявления. Позже Максвеллу удалось найти систему уравнений, которым подчиняется электромагнитное поле.

Читайте также  Как настроить электронную розетку с таймером

Напряженность поля — векторная величина, которая характеризует его в конкретной точке.

Основная характеристика

Пространство около электрического заряда отличается от пустоты, даже если заряд находится в вакууме. В этом случае говорят о присутствии поля, способного действовать на любой другой заряд. Взаимозависимость силы воздействия точечных зарядов и их величины описывает закон Кулона.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Поэтому для описания поля обычно прибегают к понятию силы, с которой оно действует на положительный заряд, равный единице: такую характеристику называют напряженностью и обозначают (overrightarrow<Е>) . Она равна отношению силы к величине заряда, на который та воздействует.

Таким образом, вектор напряженности электрического поля является его силовой характеристикой. Единица ее измерения — вольт на метр или в ньютон на кулон.

Определение параметров электрического поля

Зная величину внесенного в поле заряда q, можно рассчитать силу в каждом конкретном случае:

(overrightarrow = q timesoverrightarrow<Е>)

Согласно закону Кулона, напряженность поля вокруг неподвижного точечного заряда q описывается выражением:

(epsilon_<0>) — электрическая постоянная, равная (8,85times 10^<-12>) Ф/м.

Для вычисления напряженности всего поля нужно сложить напряженности полей отдельных зарядов, т. е. воспользоваться принципом суперпозиции:

(overrightarrow <Е>= overrightarrow<Е_<1>> + overrightarrow<Е_<2>>)

Если во всех точках поля напряженность одинакова, оно считается однородным. Если она различается — неоднородным.

Какое направление имеет вектор, как определить

Напряженность по направлению совпадает с силой, с которой поле воздействует на единичный заряд. Если оно создано положительным зарядом, происходит отталкивание: вектор направлен от заряда во внешнее пространство. Если отрицательным зарядом, вектор будет направлен к нему.

Также напряженность тесно связана с напряжением — вектор напряженности всегда направлен в сторону уменьшения потенциала, а сама она равна его градиенту, т. е. скорости его изменения. К эквипотенциальной поверхности вектор напряженности перпендикулярен в каждой точке.

Направленное колебание векторов напряженности в электромагнитной волне называется поляризацией. Она бывает круговой, эллиптической и линейной — в зависимости от формы кривой, вычерчиваемой концом вектора амплитуды. Круговая или эллиптическая поляризация может быть правой или левой, что определяется направлением вращения вектора.

Чтобы описать поляризацию волны, компоненты вектора напряженности выражают с помощью параметров Стокса, интерпретируя их, как координаты точек, расположенных на сфере, называемой сферой Пуанкаре.

Поток вектора напряженности, применение теоремы Гаусса

Суть теоремы, сформулированной Карлом Фридрихом Гауссом, сводится к следующему: если представить, что заряды окружены замкнутой поверхностью S, тогда поток вектора напряженности электрического поля через элементарную площадку (triangle S) можно записать как:

(triangle Ф = Еcosalphatriangle S)

(alpha) здесь — угол между нормалью к площадке и (overrightarrow<Е>) .

Тогда поток через площадку (S) описывается формулой:

(Е_) здесь — модуль нормальной составляющей поля (overrightarrow<Е>) , произведение вектора (overrightarrow<Е>) на нормаль (overrightarrow) к данной площадке.

Поток векторного поля через поверхность — интеграл второго рода по поверхности S.

Полный поток вектора электрического поля через произвольно выбранную замкнутую поверхность равняется сумме потоков от всех зарядов, распределенных внутри нее случайным образом, и пропорционален величине этого заряда:

(Ф = oint_S E times dS = 4pi Q = frac>)

Поскольку взаимодействия между зарядами не имеют значения, расчеты значительно упрощаются. С помощью теоремы Гаусса можно рассчитать поле любого числа зарядов, но это реализуемо только в случае их симметричного расположения, когда можно выбрать поверхность, через которую получится рассчитать поток напряженности.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector