Как атом может получить стабильное постоянство электронов

Как атом может получить стабильное постоянство электронов

Как атом может получить стабильное постоянство электронов

Основы строения атома. Просто о сложном

  • 12 января 2021 г.
  • 9 минут
  • 29 671

Все в мире состоит из атомов. Но откуда они взялись, и из чего состоят сами? Сегодня отвечаем на эти простые и фундаментальные вопросы. Ведь многие люди, живущие на планете, говорят, что не понимают строения атомов, из которых сами и состоят.

Естественно, уважаемый читатель понимает, что в данной статье мы стараемся изложить все на максимально простом и интересном уровне, поэтому не «грузим» научными терминами. Тем, кто хочет изучить вопрос на более профессиональном уровне, советуем читать специализированную литературу. Тем не менее, сведения данной статьи могут сослужить хорошую службу в учебе и просто сделать Вас более эрудированными.

Атом – это частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, которая является носителем его свойств. Иными словами, это мельчайшая частица того или иного вещества, которая может вступать в химические реакции.

История открытия и строение

Понятия атома было известно еще в Древней Греции. Атомизм – физическая теория, которая гласит, что все материальные предметы состоят из неделимых частиц. Наряду с Древней Грецией, идеи атомизма параллельно развивался еще и в Древней Индии.

Не известно, рассказали тогдашним философам об атомах инопланетяне, или они додумались сами, но экспериментально подтвердить данную теорию химики смогли много позже – только в семнадцатом веке, когда Европа выплыла из пучины инквизиции и средневековья.

Долгое время господствующим представлением о строении атома было представление о нем как о неделимой частице. То, что атом все-таки можно разделить, выяснилось только в начале двадцатого века. Резерфорд, благодаря своему знаменитому опыту с отклонением альфа-частиц, узнал, что атом состоит из ядра, вокруг которого вращаются электроны. Была принята планетарная модель атома, в соответствии с которой электроны вращаются вокруг ядра, как планеты нашей Солнечной системы вокруг звезды.

Планетарная модель

Современные представления о строении атома продвинулись далеко. Ядро атома, в свою очередь, состоит субатомных частиц, или нуклонов – протонов и нейтронов. Именно нуклоны составляют основную массу атома. При этом протоны и нейтроны также не являются неделимыми частицами, и состоят из фундаментальных частиц — кварков.

Ядро атома имеет положительный электрический заряд, а электроны, вращающиеся по орбите – отрицательный. Таким образом, атом электрически нейтрален.

Ниже приведем элементарную схему строения атома углерода.

Схема строения атома

Свойства атомов

Масса

Массу атомов принято измерять в атомных единицах массы – а.е.м. Атомная единица массы представляет собой массу 1/12 части свободно покоящегося атома углерода, находящегося в основном состоянии.

В химии для измерения массы атомов используется понятие «моль». 1 моль – это такое количество вещества, в котором содержится число атомов, равное числу Авогадро.

Размер

Размеры атомов чрезвычайно малы. Так, самый маленький атом – это атом Гелия, его радиус – 32 пикометра. Самый большой атом – атом цезия, имеющий радиус 225 пикометров. Приставка пико означает десять в минус двенадцатой степени! То есть , если 32 метра уменьшить в тысячу миллиардов раз, мы получим размер радиус атома гелия.

При этом, масштабы вещей таковы, что, по сути, атом на 99% состоит из пустоты. Ядро и электроны занимают крайне малую часть его объема. Для наглядности, рассмотрим такой пример. Если представить атом в виде олимпийского стадиона в Пекине (а можно и не в Пекине, просто представьте себе большой стадион), то ядро этого атома будет представлять собой вишенку, находящуюся в центре поля. Орбиты электронов при этом находились бы где-то на уровне верхних трибун, а вишня весила бы 30 миллионов тонн. Впечатляет, не так ли?

Если предсавить атом в виде стадиона, ядро будет размером с вишню в центре поля

Откуда взялись атомы?

Как известно, сейчас различные атомы сгруппированы в таблицу Менделеева. В ней насчитывается 118 (а если с предсказанными, но еще не открытыми элементами — 126) элементов, не считая изотопов. Но так было далеко не всегда.

В самом начале формирования Вселенной никаких атомов не было и подавно, существовали лишь элементарные частицы, под воздействием огромных температур взаимодействующие между собой. Как сказал бы поэт, это был настоящий апофеоз частиц. В первые три минуты существования Вселенной, из-за понижения температуры и совпадения еще целой кучи факторов, запустился процесс первичного нуклеосинтеза, когда из элементарных частиц появились первые элементы: водород, гелий, литий и дейтерий (тяжелый водород). Именно из этих элементов образовались первые звезды, в недрах которых проходили термоядерные реакции, в результате которых водород и гелий «сгорали», образуя более тяжелые элементы. Если звезда была достаточно большой, то свою жизнь она заканчивала так называемым взрывом «сверхновой», в результате которого атомы выбрасывались в окружающее пространство. Так и получилась вся таблица Менделеева.

Вселенная

Так что, можно сказать, что все атомы, из которых мы состоим, когда-то были частью древних звезд.

Почему ядро атома не распадается?

В физике существует четыре типа фундаментальных взаимодействий между частицами и телами, которые они составляют. Это сильное, слабое, электромагнитное и гравитационное взаимодействия.

Именно благодаря сильному взаимодействию, которое проявляется в масштабах атомных ядер и отвечает за притяжение между нуклонами, атом и является таким «крепким орешком».

Не так давно люди поняли, что при расщеплении ядер атомов высвобождается огромная энергия. Деление тяжелых атомных ядер является источником энергии в ядерных реакторах и ядерном оружии.

Ядерный взрыв

Итак, друзья, познакомив Вас со структурой и основами строения атома, нам остается только напомнить о том, что наши авторы готовы в любой момент прийти Вам на помощь. Не важно, нужно Вам выполнить диплом по ядерной физике, или самую маленькую контрольную – ситуации бывают разные, но выход есть из любого положения. Подумайте о масштабах Вселенной, закажите работу в Zaochnik и помните – нет поводов для беспокойства.

Как работают атомы

Что удерживает электрон в атоме на орбите атомного ядра?

На первый взгляд, особенно если смотреть на мультяшную версию атома, описанную мною ранее со всеми её недостатками, электроны, двигающиеся по орбите вокруг ядра, выглядят так же, как планеты, двигающиеся по орбите вокруг Солнца. И вроде бы принцип этих процессов одинаков. Но есть подвох.

Что удерживает планеты на орбите вокруг Солнца? В Ньютоновской гравитации (Эйнштейновская сложнее, но тут она нам не нужна) любая пара объектов притягивается друг к другу посредством гравитационного взаимодействия, пропорционального произведению их масс. В частности, гравитация Солнца притягивает к нему планеты (с силой, обратно пропорциональной квадрату расстояния между ними. То есть, если расстояние уменьшается вдвое, сила увеличивается вчетверо). Планеты тоже притягивают Солнце, но оно настолько тяжёлое, что это почти не влияет на его движение.

Инерция, тенденция объектов к перемещению по прямым линиям в случае отсутствия действия на них других сил, работает против гравитационного притяжения, и в результате планеты двигаются вокруг Солнца. Это видно на рис.1, где изображена круговая орбита. Обычно эти орбиты эллиптические – хотя в случае планет они почти круглые, поскольку так формировалась Солнечная система. Для различных мелких камней (астероидов) и глыб льда (комет), двигающихся по орбитам вокруг Солнца, это уже не так.

Сходным образом все пары электрически заряженных объектов притягиваются или отталкиваются друг от друга, с силой, тоже обратно пропорциональной квадрату расстояния между ними. Но, в отличие от гравитации, которая всегда притягивает объекты вместе, электрические силы могут как притягивать, так и отталкивать. Объекты, обладающие одинаковыми, положительными или отрицательными зарядами, отталкиваются. А отрицательно заряженный объект притягивает положительно заряженный объект, и наоборот. Отсюда и романтическая фраза «противоположности притягиваются».

Поэтому положительно заряженное атомное ядро в центре атома притягивает легковесные электроны, двигающиеся на задворках атома, к себе, примерно как Солнце притягивает планеты. Электроны тоже притягивают ядро, но масса ядер настолько больше, что их притяжение почти не влияет на ядро. Электроны также отталкиваются друг от друга, что является одной из причин, по которым они не любят проводить время близко друг к другу. Можно было бы считать, что электроны в атоме перемещаются по орбитам вокруг ядра примерно так же, как планеты перемещаются вокруг Солнца. И на первый взгляд, именно так они и поступают, особенно в мультяшном атоме.

Но вот, в чём подвох: на самом деле, это двойной подвох, и каждый из двух подвохов оказывает эффект, противоположный другому, в результате чего они взаимно уничтожаются!

Двойной подвох: как атомы отличаются от планетных систем

Первый подвох: в отличие от планет, электроны, двигающиеся по орбитам вокруг ядра, должны излучать свет (точнее, электромагнитные волны, одним из примеров которых служит свет). А это излучение должно заставлять электроны замедляться и по спирали падать на ядро. В принципе, в теории Эйнштейна существует схожий эффект – планеты могут испускать гравитационные волны. Но он чрезвычайно мал. В отличие от случая с электронами. Получается, что электроны в атоме должны очень быстро, за малую долю секунды, по спирали упасть на ядро!

И они бы так и сделали, если бы не квантовая механика. Потенциальная катастрофа изображена на рис. 2.

Второй подвох: но наш мир работает согласно принципам квантовой механики! А у неё есть свой удивительный и контринтуитивный принцип неопределённости. Этот принцип, описывающий тот факт, что электроны – это такие же волны, как и частицы, заслуживает своей собственной статьи. Но вот, что нам нужно знать о нём для сегодняшней статьи. Общее следствие этого принципа состоит в том, что невозможно знать все характеристики объекта одновременно. Существуют наборы характеристик, для которых измерение одной из них делает другие неопределёнными. Один из случаев – это местоположение и скорость таких частиц, как электроны. Если вы точно знаете, где находится электрон, вы не знаете, куда он направляется, и наоборот. Можно достичь компромисса и с некоторой точностью знать, где он, и с некоторой точностью знать, куда он направляется. В атоме так всё и получается.

Допустим, электрон по спирали падает на ядро, как на рис. 2. В процессе его падения нам всё точнее и точнее будет известно его местоположение. Тогда принцип неопределённости говорит нам, что его скорость будет становиться всё более и более неопределённой. Но если электрон остановится на ядре, его скорость не будет неопределённой! Поэтому он не может остановиться. Если он вдруг попробует упасть вниз по спирали, ему придётся всё быстрее и быстрее передвигаться случайным образом. И это увеличение скорости уведёт электрон в сторону от ядра!

Так что тенденция падения по спирали будет нейтрализована тенденцией к более быстрому движению согласно принципу неопределённости. Баланс находится, когда электрон располагается на предпочтительном расстоянии от ядра, и это расстояние определяет размер атомов!

Если электрон изначально находится далеко от ядра, он будет двигаться к нему по спирали, как показано на рис. 2, и излучать электромагнитные волны. Но в результате его расстояние от ядра станет достаточно малым для того, чтобы принцип неопределённости запретил дальнейшее сближение. На этом этапе, когда найден баланс между излучением и неопределённостью, электрон организует стабильную «орбиту» вокруг ядра (точнее, орбиталь – этот термин выбран, чтобы подчеркнуть, что в отличие от планет, у электрона из-за квантовой механики нет таких орбит, какие есть у планет). Радиус орбитали определяет радиус атома (рис. 3).

Ещё одна особенность – принадлежность электронов к фермионам – заставляет электроны не спускаться до одного радиуса, и выстраиваться по орбиталям разных радиусов.

Насколько атомы крупные? Приближение на основе принципа неопределённости

На самом деле мы можем примерно оценить размер атома, используя только расчёты для электромагнитных взаимодействий, массу электрона и принцип неопределённости. Для простоты проделаем расчёты для атома водорода, где ядро состоит из одного протона, вокруг которого двигается один электрон.

  • Массу электрона обозначим
  • Неопределённость позиции электрона обозначим Δx
  • Неопределённость скорости электрона обозначим Δv

Принцип неопределённости утверждает:

где ℏ — это постоянная Планка h, делённая на 2 π. Обратите внимание, он говорит, что (Δ v) (Δ x) не может быть слишком малым, что означает, что обе определённости не могут быть слишком малыми, хотя одна из них может быть очень малой, если другая будет очень большой.

Когда атом устанавливается в предпочтительном основном состоянии, мы можем ожидать, что знак ≥ превратится в знак

B означает, что «A и B не совсем равны, но и не сильно отличаются». Это очень полезный символ для оценок!

Для атома водорода в основном состоянии, в котором неопределённость положения Δx будет примерно равна радиусу атома R, а неопределённость скорости Δv будет примерно равна типичной скорости V движения электрона вокруг атома, мы получим:

Как узнать R и V? Между ними и силой, удерживающей атом вместе, существует взаимоотношение. В неквантовой физике объект массы m, находящийся на круговой орбите радиуса r, и двигающийся со скоростью v вокруг центрального объекта, притягивающего его с силой F, будет удовлетворять уравнению

К электрону в атоме напрямую это неприменимо, но приближённо это работает. Сила, действующая в атоме, это электрическая сила, с которой протон с зарядом +1 притягивает электрон с зарядом -1, и в результате уравнение принимает вид

где k – константа Кулона, e – единица заряда, c – скорость света, ℏ — это постоянная Планка h, делённая на 2 π, а α – определённая нами постоянная тонкой структуры, равная . Совместим два предыдущих уравнения для F, и оценочное соотношение получается следующим:

Теперь применим это к атому, где v → V, r → R, и m → me. Также умножим верхнее уравнение на . Это даёт:

На последнем шаге мы использовали наше соотношение неопределённости для атома, . Теперь можно вычислить радиус атома R:

И это оказывается практически точным! Такие простые оценки не дадут вам точных ответов, но очень хорошее приближение обеспечат!

Атомы и электроны

Атомно-молекулярное учение

Мы приступаем к изучению химии — мира молекул и атомов. В этой статье мы рассмотрим базисные понятия и разберемся с электронными формулами элементов.

Атом (греч. а — отриц. частица + tomos — отдел, греч. atomos — неделимый) — электронейтральная частица вещества микроскопических размеров и массы, состоящая из положительно заряженного ядра (протонов) и отрицательно заряженных электронов (электронные орбитали).

Описываемая модель атома называется «планетарной» и была предложена в 1913 году великими физиками: Нильсом Бором и Эрнестом Резерфордом

Протон (греч. protos — первый) — положительно заряженная (+1) элементарная частица, вместе с нейтронами образует ядра атомов элементов. Нейтрон (лат. neuter — ни тот, ни другой) — нейтральная (0) элементарная частица, присутствующая в ядрах всех химических элементов, кроме водорода.

Электрон (греч. elektron — янтарь) — стабильная элементарная частица с отрицательным электрическим зарядом (-1), заряд атома — порядковый номер в таблице Менделеева — равен числу электронов (и, соответственно, протонов).

Запомните, что в невозбужденном состоянии атом содержит одинаковое число электронов и протонов. Так у кальция (порядковый номер 20) в ядре находится 20 протонов, а вокруг ядра на электронных орбиталях 20 электронов.

Я еще раз подчеркну эту важную деталь. На данном этапе будет отлично, если вы запомните простое правило: порядковый номер элемента = числу электронов. Это наиболее важно для практического применения и изучения следующей темы.

Электронная конфигурация атома

Электроны атома находятся в непрерывном движении вокруг ядра. Энергия электронов отличается друг от друга, в соответствии с этим электроны занимают различные энергетические уровни.

Энергетические уровни подразделяются на несколько подуровней:

    Первый уровень

Состоит из s-подуровня: одной «1s» ячейки, в которой помещаются 2 электрона (заполненный электронами — 1s 2 )

Состоит из s-подуровня: одной «s» ячейки (2s 2 ) и p-подуровня: трех «p» ячеек (2p 6 ), на которых помещается 6 электронов

Состоит из s-подуровня: одной «s» ячейки (3s 2 ), p-подуровня: трех «p» ячеек (3p 6 ) и d-подуровня: пяти «d» ячеек (3d 10 ), в которых помещается 10 электронов

Состоит из s-подуровня: одной «s» ячейки (4s 2 ), p-подуровня: трех «p» ячеек (4p 6 ), d-подуровня: пяти «d» ячеек (4d 10 ) и f-подуровня: семи «f» ячеек (4f 14 ), на которых помещается 14 электронов

Зная теорию об энергетических уровнях и порядковый номер элемента из таблицы Менделеева, вы должны расположить определенное число электронов, начиная от уровня с наименьшей энергией и заканчивая к уровнем с наибольшей. Чуть ниже вы увидите несколько примеров, а также узнаете об исключении, которое только подтверждает данные правила.

Подуровни: «s», «p» и «d», которые мы только что обсудили, имеют в определенную конфигурацию в пространстве. По этим подуровням, или атомным орбиталям, движутся электроны, создавая определенный «рисунок».

S-орбиталь похожа на сферу, p-орбиталь напоминает песочные часы, d-орбиталь — клеверный лист.

Правила заполнения электронных орбиталей и примеры

Существует ряд правил, которые применяют при составлении электронных конфигураций атомов:

  • Сперва следует заполнить орбитали с наименьшей энергией, и только после переходить к энергетически более высоким
  • На орбитали (в одной «ячейке») не может располагаться более двух электронов
  • Орбитали заполняются электронами так: сначала в каждую ячейку помещают по одному электрону, после чего орбитали дополняются еще одним электроном с противоположным направлением
  • Порядок заполнения орбиталей: 1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d → 5p → 6s

Должно быть, вы обратили внимание на некоторое несоответствие: после 3p подуровня следует переход к 4s, хотя логично было бы заполнить до конца 4s подуровень. Однако природа распорядилась иначе.

Запомните, что, только заполнив 4s подуровень двумя электронами, можно переходить к 3d подуровню.

Без практики теория мертва, так что приступает к тренировке. Нам нужно составить электронную конфигурацию атомов углерода и серы. Для начала определим их порядковый номер, который подскажет нам число их электронов. У углерода — 6, у серы — 16.

Теперь мы располагаем указанное количество электронов на энергетических уровнях, руководствуясь правилами заполнения.

Обращаю ваше особе внимание: на 2p-подуровне углерода мы расположили 2 электрона в разные ячейки, следуя одному из правил. А на 3p-подуровне у серы электронов оказалось много, поэтому сначала мы расположили 3 электрона по отдельным ячейкам, а оставшимся одним электроном дополнили первую ячейку.

Таким образом, электронные конфигурации наших элементов:

  • Углерод — 1s 2 2s 2 2p 2
  • Серы — 1s 2 2s 2 2p 6 3s 2 3p 4
Внешний уровень и валентные электроны

Количество электронов на внешнем (валентном) уровне — это число электронов на наивысшем энергетическом уровне, которого достигает элемент. Такие электроны называются валентными: они могут быть спаренными или неспаренными. Иногда для наглядного представления конфигурацию внешнего уровня записывают отдельно:

  • Углерод — 2s 2 2p 2 (4 валентных электрона)
  • Сера -3s 2 3p 4 (6 валентных электронов)

Неспаренные валентные электроны способны к образованию химической связи. Их число соответствует количеству связей, которые данный атом может образовать с другими атомами. Таким образом неспаренные валентные электроны тесно связаны с валентностью — способностью атомов образовывать определенное число химических связей.

  • Углерод — 2s 2 2p 2 (2 неспаренных валентных электрона)
  • Сера -3s 2 3p 4 (2 неспаренных валентных электрона)
Тренировка

Потренируйтесь и сами составьте электронную конфигурацию для магния и скандия. Определите число электронов на внешнем (валентном) уровне и число неспаренных электронов. Ниже будет дано наглядное объяснение этой задаче.

Запишем получившиеся электронные конфигурации магния и фтора:

  • Магний — 1s 2 2s 2 2p 6 3s 2
  • Скандий — 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1

Почему атомы устойчивы?

Почему атомы устойчивы?

По законам механики электрон в атоме необходимо должен обращаться вокруг ядра. Иначе он упадет на ядро, с атомом произойдет какая-то катастрофа. В самом деле, массивное положительно заряженное ядро притягивает отрицательно заряженный электрон, как Солнце притягивает планеты. Если планеты не падают на Солнце, то только потому, что они обращаются вокруг него. Значит, если электроны не падают иа ядра, то необходимо предположить, что они не находятся в покое в атоме, а обращаются вокруг ядра.

Электродинамика, наука о движении зарядов, давно установила, что когда электрические заряды меняют направление движения или скорость, они излучают электромагнитные волны. Следовательно, электроны при обращении вокруг ядра должны порождать электромагнитные волны, т. е. световое излучение. Так, по крайней мере, следует из законов, найденных физикой для мира больших тел.

Однако если применить эти законы к атомам, опять возникают противоречия. В самом деле, если электрон неизбежно должен обращаться вокруг ядра и если он при этом неизбежно должен излучать, то также неизбежно он должен терять энергию. А потеря энергии неизбежно приведет к тому, что электрон будет быстро приближаться к ядру. Через какие-нибудь миллионные доли секунды должна неминуемо произойти катастрофа — электрон упадет на ядро.

Таким образом, законы механики требуют: чтобы избежать катастрофы, электрон в атоме должен обращаться вокруг ядра. А законы электродинамики утверждают: раз обращение заряда — значит излучение; раз излучение — значит потеря энергии и катастрофа.

Но катастрофа не происходит. Из опыта мы видим, что атомы большинства элементов в обычных условиях вполне устойчивы. А неустойчивость радиоактивных атомов связана не с характером движения электронов, а со свойствами ядер. Впрочем, и атомы радиоактивных элементов в конце концов превращаются в очень устойчивые атомы новых, нерадиоактивных элементов.

Почему же атомы устойчивы?

Не действуют ли в атомах какие-то новые законы излучений, которые были неизвестны ранее?

Физики вооружаются электронной пушкой. На помощь ученым вновь пришел свет, точнее, изучение условий, при которых возникают излучения в атомах.

Внимание физиков привлек один очень существенный факт: атомы излучают определенные частоты не в любом состоянии. Они излучают, когда вещество нагревается до очень высокой температуры или когда через него пропускают электрический ток (если речь идет о газах), или когда атомы обстреливаются потоком электронов или рентгеновских лучей, словом, когда атомы вещества «возбуждаются», т. е. когда их внутренняя энергия возрастает.

Этот факт известен давно. Он говорит о том, что в обычном, «нормальном» состоянии атом не излучает, каковы бы ни были движения электронов в нем. По-видимому, излучения атома связаны не с движениями электронов, а с особыми «потрясениями» в атоме.

Не узнаем ли мы более подробно о характере излучения атомов, если изучим процесс возбуждения атомов?

Прежде всего надо научиться управлять возбуждением. Это значит, надо научиться передавать атомам ровно столько энергии, сколько мы хотим.

Годится ли для этого газовая горелка? Нет, не годится. В газовой горелке атомы какого-либо вещества получают энергию при ударе их атомами газов, образующих пламя. А в пламени атомы газа движутся с самыми различными скоростями. И энергия у них поэтому различна. При столкновениях в пламени один атом вещества получит одну порцию энергии, а другой, может быть, в сотни раз больше. И этого никак не избежишь.

Но вот около полусотни лет назад физики научились получать поток электронов, в котором все электроны имеют одну и ту же скорость, а следовательно, и одинаковую энергию. Для этой цели была построена специальная «электронная пушка». Источником электронов в ней служила металлическая проволочка. Она накаливалась током, и тогда из нее- вылетали электроны. По вылете электроны попадали в специально созданное электрическое поле, которое ускоряло их движение, доводило их энергию до необходимого, точно определенного уровня. Изменяя разность потенциалов поля, можно было по желанию уменьшать или увеличивать энергию электронов. Так как энергия, полученная таким путем электронами, очень мала, то ее стали измерять не обычными единицами, а «электрон-вольтами». Эта единица энергии равна энергии, которую приобретает электрон, ускоренный электрическим полем с разностью потенциалов в один вольт.

Такая электронная пушка и была использована для возбуждения атомов.

Читайте также

Глава III. Атомы и частицы

Глава III. Атомы и частицы 1. Атомная структура материи Хорошо известно, что древние мыслители неоднократно высказывали предположение о дискретной природе материи. Они пришли к этому, исходя из философской идеи о том, что невозможно осознать бесконечную делимость материи

Глава 1 АТОМЫ В ДВИЖЕНИИ

Глава 1 АТОМЫ В ДВИЖЕНИИ § 1. Введение§ 2. Вещество состоит из атомов§ 3. Атомные процессы§ 4. Химические реакции§ 1. ВведениеЭтот двухгодичный курс физики рассчитан на то, что вы, читатель, собираетесь стать физиком. Положим, это не так уж обязательно, но какой преподаватель

III. Откуда берутся атомы?

III. Откуда берутся атомы? Рождение элементов (t = 1 секунда — 3 минуты)Мы уже очень далеко уклонились от первоначального вопроса крошки Билли «Откуда я взялся?»[115], зато теперь готовы дать на него ответ получше.Сначала надо рассказать малышу, из чего он на самом деле сделан.

Свет и атомы

Свет и атомы Почему атомы светятся? Свет рождается в веществе. Таково происхождение и видимого света, и инфракрасного, и ультрафиолетового, и рентгеновских излучений, и гамма-излучений. Естественно, что, изучая свойства света, можно в конечном счете узнать, при каких

Почему атомы светятся?

Почему атомы светятся? Свет рождается в веществе. Таково происхождение и видимого света, и инфракрасного, и ультрафиолетового, и рентгеновских излучений, и гамма-излучений. Естественно, что, изучая свойства света, можно в конечном счете узнать, при каких условиях атомы

Как атомы обмениваются энергией?

Как атомы обмениваются энергией? В первом опыте были взяты пары ртути. Энергия снарядов-электронов увеличивалась постепенно. Оказалось, что при малых энергиях электронов никакого возбуждения атомов ртути не наступало. Электроны ударяли в них, но отскакивали с той же

10. Одни и те же атомы, но разные кристаллы

10. Одни и те же атомы, но разные кристаллы Чёрный матовый мягкий графит, которым мы пишем, и блестящий прозрачный твёрдый, режущий стекло алмаз построены из одних и тех же атомов, а именно, атомов углерода. Почему так резко различны свойства этих двух сходных по составу

Атомы, физика и этика

Атомы, физика и этика Самая первая перестройка фундамента физики произошла после двух веков царствования порядка, открытого Ньютоном. Главную роль в той перестройке сыграл Джеймс Максвелл, и эту роль трудно переоценить именно потому, что он ввел первое новое

Глава вторая. Атомы

Глава вторая. Атомы Физические явления, происходящие в окружающем нас мире, представляют бесконечную цепь загадок. Вода, охлаждаясь, превращается в твердый, бесцветный лед, нагреваясь же, становится невидимым водяным паром. Если ее слегка подкислить серной кислотой и

Атомы

Атомы Около 2000 лет назад в Древнем Риме была написана оригинальная поэма. Ее автором был римский поэт Лукреций Кар. «О природе вещей» – так называлась поэма Лукреция.Звучными стихами рассказал Лукреций в своем поэтическом произведении о взглядах древнегреческого

Одни и те же атомы, но разные кристаллы

Одни и те же атомы, но разные кристаллы Черный матовый мягкий графит, которым мы пишем, и блестящий прозрачный, твердый, режущий стекло алмаз построены из одних и тех же атомов – атомов углерода. Почему же так различны свойства этих двух одинаковых по составу

2. Почему атомы повсюду танцуют рок-н-ролл

2. Почему атомы повсюду танцуют рок-н-ролл Тот факт, что вы не проваливаетесь сквозь пол, говорит вам: есть что-то такое, что не дает микроскопическим составляющим материи развалиться на еще более мелкие части С классической точки зрения атомы попросту невозможны. Ричард

Атомы

Атомы Уже Демокрит и Лесипс в V в. до н.э. говорили об атомах. Римский поэт Лукреций (98—55 до н.э.) в De rerum natura, объясняя теорию Демокрита, говорил, что воздух, земля и все другие вещи мира сделаны из набора частиц или корпускул — атомов, находящихся в безостановочном и очень

III. Откуда берутся атомы?

III. Откуда берутся атомы? Рождение элементов (t = 1 секунда – 3 минуты)Мы уже очень далеко уклонились от первоначального вопроса крошки Билли «Откуда я взялся?»[116], зато теперь готовы дать на него ответ получше. Сначала надо рассказать малышу, из чего он на самом деле сделан.

Строение атома. Гибридизация орбиталей

Обычно в начале статьи пишут краткий план того, о чем пойдет речь в статье. Еще добавляют зачем и почему на нее нужно тратить время. Но здесь такого не будет, потому что я не уверен — нужна ли она вообще.

Но я расскажу историю. Вообще статья должна была быть про белок, как формируется первичная, вторичная структура, ну и так далее. И вот идет подготовка материала, а там довольно большую роль играет электроотрицательность. На самом деле не очень и большую, но все-таки роль у нее есть. И вот мне стало интересно, а как она формируется? Ты конечно знаешь, что она растет в периодической таблице слева направо и зависит от радиуса атома. Но почему? В общем-то эти вопросы привели меня к строению атома и закону Кулона. Поэтому сейчас мы устроим маленькое путешествие в химию и физику. Начнем со строения атома. А уже в следующей статье будем разбираться с электроотрицательностью.

Планетарная модель строения атома от Резерфорда

Это модель ключевая, потому что на ее основе строились все остальные. Вообще Резерфорд крутой мужик, который очень любил всякие опыты. Вот один из них:

Резерфорд взял источник альфа-частиц и направил его на фольгу из золота. Диафрагма нужна для того, чтобы альфа-излучение направлялось только к фольге, а не разлеталось в разные стороны. При прохождении альфа-частиц через атомы золота они отклонялись, а место их удара отмечалось на цинковом экране (он светится, когда на него попадает альфа-частица). Ничего удивительного, у атома есть заряд, и он вызывает отклонение частиц. Но тут случилось кое-что необычное: очень редко альфа-частицы отскакивали в другую сторону — к месту их «запуска». Резерфорд очень удивился и сказал: «Да это примерно тоже самое, что стрелять по тряпке из ружья и получить пулю в лоб». Конечно, не дословно, но смысл примерно такой.

Какие выводы делает Резерфорд из этого опыта? Он предполагает, что основная масса атома сосредоточена в его ядре — когда альфа-частицы попадают в него, то отскакивают в обратную сторону. Ядро очень маленькое и заряжено положительно, а вокруг него по орбитам летают отрицательно заряженные электроны. Он называет это планетарной моделью. Очень красиво, согласитесь? Мы живем в мире, который находится в солнечной системе. А атомы, из которых состоит все вокруг, имеют строение такой же системы.

Это все очень поэтично и красиво, но есть парочка проблем:

  1. Если электроны летят по орбите, то у них есть скорость, и они излучают электромагнитные волны — или энергию. А значит они быстро ее потратят и упадут на ядро.
  1. Некоторые атомы излучают свет — фотоны. Это называется спектром. Но при такой модели им неоткуда взять такое количество энергии. Мало того, что они падают на ядро, так им еще и излучать что-то нужно. Не очень все это складывается.

Были и еще проблемы, но это основные. Как же их решить?

Полуклассическая модель атома по Бору

Появляется второй крутой мужик. Может быть, он даже круче первого, потому что говорит такое — от чего волосы у физиков встают дыбом. Бор взял модель атома по Резерфорду и сказал что-то вроде: «Давайте предположим, что электроны движутся по орбитам, но никакую энергию они не излучают. Но если электрон перепрыгивает с одной орбиты на другую, то он выделяет энергию — фотоны. Это и есть спектр!»

Бор назвал состояние атома, когда его электроны движутся по свои орбитам, стационарным состоянием. При перепрыгивании одного электрона на другую орбиту атом становится возбужденным и может выделять энергию. Атом становится возбужденным не просто так — он поглощает какую-то энергию извне, она представляет собой фотон или фотоны.

Переведем Бора на язык физиков: “Вся ваша физика полная туфта. Атому на нее плевать, он живет по другим законам”. И все как бы в шоке, но больше всех Эйнштейн — он становится главным хейтером Бора. Но экспериментально модель Бора подтверждается.

Модель Бора чем-то похожа на дом. Представьте себе панельку. Если электрон упадет с 7 этажа на первый, то он выделит энергию — это и есть фотон. А вот если зарядить как следует атом, то электрон может прыгнуть с первого этажа на пятый. Чем больше зарядишь, тем выше прыгнет. Чем с большей высоты упадет, тем больше выделит энергии. Примерно так. Оказалось, что Бор был прав и дальше мы это увидим.

Резерфорд, кстати, сделал предположение, что ядро состоит из положительно заряженных протонов. Но Резерфорд и Бор еще не знали, от чего зависит количество электронов и протонов, но с этим разберутся попозже.

Современная модель атома

Ну а дальше началось самое интересное — физики взяли модель атома по Бору и добавили к ней своего добра. Так получилась современная модель атома. Конец! Ну или не совсем. Атом состоит из ядра и электронной оболочки. Начинаем с ядра.

Ядро атома

У атома есть ядро, которое состоит из протонов и нейтронов. Протоны заряжены положительно, а у нейтронов заряда нет. Количество протонов и электронов равно — зависит от порядкового номера в таблице Менделеева. Если это атом азота, то у него 7 протонов и 7 электронов. Нейтрон такому правилу не подчиняется — их может быть больше, а может и меньше. Протон и нейтрон весят в примерно 1800 раз больше, чем электрон. Поэтому основная масса атома находится в ядре.

На самом деле протон и нейтрон состоят из других частиц, но не будем слишком глубоко копать. Можешь почитать, если интересно.

Электронная оболочка

Электронная оболочка — это все электроны атома. Она состоит из слоев, на которых располагается какая-то часть электронов.

Каждый слой состоит из орбиталей. Заметили? Не орбит, а орбиталей. Орбита — это траектория движения тела, на которой в какой-то момент времени можно его встретить. Помните круговые поливалки в деревне? Вода из них движется по определенной траектории. Можно встать и подождать пока тебя польют в жаркий день. Орбиталь — это другое дело, на ней электрон проводит 90 процентов времени, но как он там движется — одному ему известно. Поэтому можно стоять очень долго, но так и не дождаться пока тебя польют. Пример не очень, согласен. Лучше бы привел Луну или какую-нибудь планету, но вы поняли…

Есть 4 вида орбиталей: s, p, d и f. S- это сфера, p — бесконечность или гантелька, d и f сложнее. Я их рисовать не буду, потому что они нас не интересуют. P-орбиталей всегда 3 — px, py, pz.

Слои электронной оболочки

Теперь подробнее про слои. Первый слой состоит только из одной орбитали — s. Второй слой: одна s и три p орбиталей. Третий слой — одна s, три p и пять d орбиталей. Ну а на четвертом за 5d орбиталями добавятся еще 7f. Количество слоев зависит от количества электронов, а значит от порядкового номера атома.

Тут есть определенные правила:

  1. На каждой орбитали могут находиться только два электрона.
  1. Орбитали заполняются с определенной последовательностью, она видна на картинке.
  2. Чем дальше орбиталь от ядра атома, тем больше ее энергия и энергия электрона на ней.
  3. Электрону выгоднее быть на орбитале и слое, которые ближе всего к ядру атома. Там его энергетическое состояние стабильнее, так как меньше энергия. Поэтому электроны стремятся упасть вниз — прямо как я по социальной лестнице, ой.

Добавим к атому лития, который я показывал до этого, орбитали и получим что-то такое.

Можно еще попробовать свести орбитали в один рисунок, смотрите.

Электронная формула и орбитали атома кислорода

Химические связи чаще всего образуются за счет неспаренных электронов, но подробнее об этом поговорим в следующей статье. А сейчас нас интересует углерод и гибридизация его орбиталей.

Гибридизация орбиталей

Сначала посмотрим на электронную формулу углерода и вспомним о Боре. В стационарном состоянии у углерода всего два электрона на 2p-орбиталях. Однако, если атом углерода поглотит энергию фотона, то электрон с 2s-орбитали может перейти на 2p-орбиталь — атом углерода становится возбужденным. В таком состоянии он может образовать 4 связи, т.к. у него 4 неспаренных электрона.

И тут встал вопрос. Атом углерода в возбужденном состоянии может образовать четыре связи, так как у него четыре неспаренных электрона. Но энергия связей будет разной, потому что эти электроны располагаются на разных орбиталях (у p орбитали энергия побольше). Это не очень хорошо сказывается на стабильности системы. Как выйти из этого положения? Атом придумал интересную штуку — он изменил форму и размеры орбиталей. Это и есть гибридизация.

sp 3 -гибридизация

Когда три p орбитали объединяются с одной s, тогда получается sp 3 -гибридизация. Форма молекулы примерно такая:

И на рисунке не особо понятно, но это тетраэдр или правильная треугольная пирамида. Просто рисовать в плоскости у меня не особо хорошо получается. Здесь между орбиталями легендарный угол — 109 о 28 ‘ . В организме почти весь углерод в такой гибридизации. Но не только у него бывает sp 3 -гибридизация. В молекулах аммиака и воды тоже такая гибридизация, но с нюансом, смотрите.

У азота есть одна неподеленная электронная пара на втором энергетическом слое, а именно на 2s-орбитали — там находится два электрона и третий туда уже не засунуть. Но азот может отдать протону водорода один электрон по донорно-акцептерному механизму и образовать связь. Так возникает ион аммония. Такая же тема с водой, но кислород не может отдать по электрону от каждой электронной пары — только с одной! Так образуется ион гидроксония.

sp 2 и sp-гибридизация

Название говорит само за себя. При sp 2 -гибридизации одна p-орбиталь остается без изменений, а две другие гибридизируются с s-орбиталью. Все орбитали лежат в одной плоскости под углом 120 градусов.

Куда пропала p-связь? Ну ладно, держите формулу этилена со всеми связями.

На рисунке видно, что p-орбитали без гибридизации находятся над и под плоскостью, они образуют сигма-связь — эта связь более жесткая, чем пи-связь. Поэтому вращение вокруг нее ограничено.

sp-гибридизацию нарисовать не смогу, сорян. Но смысл вы поняли: без изменений останутся две p-орбитали, а две sp-орбитали будут похожи на палочку — угол между ними будет 180 градусов. Одна p-орбиталь будет идти над плоскостью, а другая смотреть в лицо. Надеюсь, что у тебя получилось представить. Едем дальше.

Атомный остов

Есть еще такое понятие — ядерный остов, оно понадобится нам дальше. Сейчас быстро разберемся с ним.

Электронный слой бывает завершенным или незавершенным:

  • Завершенный, если все орбитали заняты электронами.
  • Незавершенный, если заняты не все.

Заряд ядра атома (количество протонов) + заряд завершенных слоев (количество электронов) = атомный остов. Картинка….

У кислорода заряд атомного остова больше, чем у натрия. Это нам понадобится, когда будем считать электроотрицательность.

Фух, со строением атома закончили. Поздравляю всех, кто дочитал до этого момента. Дальше можно переходить к электроотрицательности, но это уже в следующей статье.

Хочешь задать вопрос, похвалить или наговорить гадостей? Тогда залетай в телегу. Там ты сможешь предложить новый формат или разбор темы. А если серьёзно, то эти статьи пишутся для вас, поэтому мне важна обратная связь.

Читайте также  Как правильно пользоваться электрической зубной щеткой
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector