К вспомогательным элементам электрической цепи относятся

К вспомогательным элементам электрической цепи относятся

К вспомогательным элементам электрической цепи относятся

К вспомогательным элементам электрической цепи относятся

Основные элементы электрических цепей

Электрической цепью называются совокупность устройств, предназначенных для взаимного преобразования, передачи и распределения электрической и других видов энергии и информации (в виде электрических сигналов), если процессы в устройствах можно описать при помощи понятий о токе, напряжении и электродвижущей силе (ЭДС).

К основным элементам электрической цепи относятся источники электрической энергии (источники питания), приемники электрической энергии или потребители, устройства для передачи энергии от источников к приемникам.

Источниками электрической энергии служат устройства, в которых происходит преобразование различных видов энергии в электромагнитную, или, как говорят сокращенно, в электрическую (на производстве и в быту говорят еще короче – электроэнергия). В качестве источников энергии применяются преимущественно электрические генераторы, в которых механическая энергия преобразуется в электрическую, первичные (гальванические) элементы и аккумуляторы, в которых химическая энергия преобразуется в электрическую, термоэлементы, фотоэлементы и солнечные батареи, преобразующие соответственно тепловую и световую энергию в электрическую, магнитогидродинамические генераторы, в которых тепловая энергия превращается в энергию движения плазмы, а затем в электрическую, атомные реакторы, в которых ядерная энергия преобразуется в тепловую.

Приемники электрической энергии преобразуют электрическую энергию в другие виды энергии, например, электродвигатели — в механическую, электрические печи и нагревательные приборы — в световую и тепловую; электролитические ванны — в химическую.

Устройствами для передачи электрической энергии от источников к приемникам являются линии передачи, электрические сети и просто провода. Проводом называется металлическая проволока, изолированная или неизолированная (голая). Провода выполняются из меди, алюминия или стали.

Токопровод электрической цепи, т. е. путь, по которому проходит электрический ток, на всем протяжении должен иметь изоляцию, устраняющую возможность прохождения тока по каким-либо побочным путям. Изоляция, кроме того, ограждает людей от прикосновения к участкам токопровода, находящимся под потенциалом, отличным от потенциала земли.

Как указывалось, провода, а также и все другие элементы цепи оказывают сопротивление электрическому току или, как обычно говорят, обладают сопротивлением.

Кроме рассмотренных основных элементов электрические цепи содержат и другие необходимые для их эксплуатации элементы; к ним относятся коммутационная аппаратура, предназначенная для включения и отключения.

Резистор — это пассивный элемент радиоэлектронной аппаратуры, предназначенный для создания в электрической цепи требуемой величины электрического сопротивления, и обеспечивающий перераспределение и регулирование электрической энергии между элементами схемы.

Резистор обладает следующим свойством, на основе которого он применяется в схемах:

[ напряжение на резисторе ] = [ сопротивление резистора ] * [ ток через резистор ]. [ сопротивление резистора ] — некая величина, характеризующая резистор. Изображенная формула еще называется законом Ома.

Резистор обладает следующим свойством, на основе которого он применяется в схемах:

[ напряжение на резисторе ] = [ сопротивление резистора ] * [ ток через резистор ]. [ сопротивление резистора ] — некая величина, характеризующая резистор. Изображенная формула еще называется законом Ома.

    • номинальное, т. е. указанное на его корпусе сопротивление;
    • номинальная мощность рассеяния;
    • наибольшее возможное отклонение действительного сопротивления от номинального (ук азы ваемое в процентах).

Действие реостатов основано на зависимости сопротивления проводника от его длины. Конструкция реостатов позволяет изменять длину участка, по которому идет ток. При увеличении этой длины сопротивление реостата возрастает, при уменьшении убывает.

Различают рычажные и ползунковые реостаты:

Использование рычажного реостата: передвигая рычаг реостата от одного контакта к другому, можно вводить большее или меньшее число проволочных спиралей, и тем самым скачком (ступенчато) изменять сопротивление в цепи.

Применяя ползунковый реостат, можно плавно изменять цепное сопротивление. Для этого реостат снабжен скользящим контактом (ползунком). Перемещая его, мы включаем меньшую (большую) часть обмотки реостата, и его сопротивление плавно изменяется.

Разновидности резисторов

Резисторы, в зависимости от сопротивления, разделяют на:

Проволочные ( Это резисторы сравнительно небольших сопротивлений, рассчитанных на токи в несколько десятков миллиампер; Для их изготовления используют тонкую проволоку из никелина, нихрома и некоторых других металлических сплавов) ;

Непроволочные (металлопленочные) ( Это резисторы больших сопротивлений, рассчитанных на сравнительно небольшие токи; При их изготовлении используют различные сплавы металлов и углерод, которые тонкими слоями наносят на изоляционные материалы.

Как проволочные, так и непроволочные резисторы могут быть постоянными , т.е. с неизменными сопротивлениями, и переменными , сопротивления которых в процессе работы можно изменять от минимальных до их максимальных значений.

В нашей стране выпускаются постоянные и переменные резисторы разных конструкций и номиналов: от нескольких Ом до десятков и сотен Мегаом. Среди постоянных наиболее распространены металлопленочные резисторы МЛТ (Металлизованные Лакированные Теплостойкие) . Их основу составляет керамическая трубка , на поверхность которой нанесен слой специального сплава ,образующего токопроводящую пленку толщиной 0,1 мкм (рис. а ).

У высокоомных резисторов этот слой может иметь форму спирали. На концы стержня с токопроводящим покрытием напрессованы металлические колпачки, к которым приварены контактные выводы резистора. Сверху корпус резистора покрыт влагостойкой цветной эмалью . Резисторы МЛТ изготовляют на мощности рассеяния 2, 1, 0,5, 0,25 и 0,125 Вт (рис в .). Их обозначения: МЛТ-2, МЛТ-1, МЛТ-0,5, МЛТ-0,25 и МЛТ-0,125 ( рис .б) (соответственно).

Цветовая маркировка резисторов

Тип маркировки, при котором на корпус резистора наносится краска в виде цветных колец или точек, называют цветовым кодом. Каждому цвету соответствует определенное цифровое значение. Цветовая маркировка на резисторах сдвинута к одному из выводов и читается слева направо. Если из-за малого размера резистора цветовую маркировку нельзя разместить у одного из выводов, то первый знак делается полосой шириной в два раза больше, чем остальные. Номинал сопротивления определяют первые три кольца (две цифры и множитель). Четвертое кольцо содержит информацию о допустимом отклонении сопротивления от номинального значения в процентах.

Электрические цепи для чайников: определения, элементы, обозначения

Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм.

Электрические цепи

Электрическая цепь – это совокупность устройств, по которым течет электрический ток.

Рассмотрим самую простую электрическую цепь. Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

Электрическая цепь – это соединенные между собой источник тока, линии передачи и приемник.

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.

Электрическая цепь

Кстати, о том, что такое трансформатор, читайте в отдельном материале нашего блога.

По какому фундаментальному признаку можно разделить все цепи электрического тока? По тому же, что и ток! Есть цепи постоянного тока, а есть – переменного. В цепи постоянного тока он не меняет своего направления, полярность источника постоянна. Переменный же ток периодически изменяется во времени как по направлению, так и по величине.

Сейчас переменный ток используется повсеместно. О том, что для этого сделал Никола Тесла, читайте в нашей статье.

Элементы электрических цепей

Все элементы электрических цепей можно разделить на активные и пассивные. Активные элементы цепи – это те элементы, которые индуцируют ЭДС. К ним относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электроприемники.

Приемники и источники тока, с точки зрения топологии цепей, являются двухполюсными элементами (двухполюсниками). Для их работы необходимо два полюса, через которые они передают или принимают электрическую энергию. Устройства, по которым ток идет от источника к приемнику, являются четырехполюсниками. Чтобы передать энергию от одного двухполюсника к другому им необходимо минимум 4 контакта, соответственно для приема и передачи.

Резисторы – элементы электрической цепи, которые обладают сопротивлением. Вообще, все элементы реальных цепей, вплоть до самого маленького соединительного провода, имеют сопротивление. Однако в большинстве случаев этим можно пренебречь и при расчете считать элементы электрической цепи идеальными.

Существуют условные обозначения для изображения элементов цепи на схемах.

Кстати, подробнее про силу тока, напряжение, сопротивление и закон Ома для элементов электрической цепи читайте в отдельной статье.

Вольт-амперная характеристика – фундаментальная характеристика элементов цепи. Это зависимость напряжения на зажимах элемента от тока, который проходит через него. Если вольт-амперная характеристика представляет собой прямую линию, то говорят, что элемент линейный. Цепь, состоящая из линейных элементов – линейная электрическая цепь. Нелинейная электрическая цепь – такая цепь, сопротивление участков которой зависит от значений и направления токов.

Какие есть способы соединения элементов электрической цепи? Какой бы сложной ни была схема, элементы в ней соединены либо последовательно, либо параллельно.

При решении задач и анализе схем используют следующие понятия:

  • Ветвь – такой участок цепи, вдоль которого течет один и тот же ток;
  • Узел – соединение ветвей цепи;
  • Контур – последовательность ветвей, которая образует замкнутый путь. При этом один из узлов является как началом, так и концом пути, а другие узлы встречаются в контуре только один раз.

Чтобы понять, что есть что, взглянем на рисунок:

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Классификация электрических цепей

По назначению электрические цепи бывают:

  • Силовые электрические цепи;
  • Электрические цепи управления;
  • Электрические цепи измерения;

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Расчет электрических цепей

Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.

Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:

Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов

Какую бы цепь Вам ни понадобилось рассчитать, наши специалисты всегда помогут справится с заданиями. Мы найдем все токи по правилу Кирхгофа и решим любой пример на переходные процессы в электрических цепях. Получайте удовольствие от учебы вместе с нами!

Электрическая цепь и ее элементы

Область применения устройств постоянного тока.

Как известно, электрическая энергия является основным видом энер­гии, с помощью которой осуществляется механическая работа, на­грев, освещение, химическое преобразование одних веществ в другие.

Постоянный ток широко используется на транспорте (электропо­езда, трамваи, троллейбусы, рудничный транспорт), так как электро­двигатели постоянного тока обладают хорошими возможностями для плавного регулирования частоты вращения ротора в широком диа­пазоне, что необходимо для транспортных средств, особенно для го­родского транспорта.

Постоянный ток используется также для освещения в шахтах, летательных аппаратах и в некото­рых других случаях. Источники постоянного напряжения широко применяются для питания устройств автоматики, промышленной электроники и вычислительной техники.

Электрическая цепь и ее элементы

Электрической цепью называется совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электрическом токе, ЭДС (электродвижущая сила) и электрическом напряжении.

Для анализа и расчета электрическая цепь графически представляется в виде электрической схемы, содержащей условные обозначения ее элементов и способы их соединения.

Электрическая схема простейшей электрической цепи, обеспечивающей работу осветительной аппаратуры, рис. 1.1.

В электрической схеме на рис. 1.1 электрическая энергия от источника ЭДС E, обладающего внутренним сопротивлением r, с помощью вспомогательных элементов цепи передаются через регулировочный реостат R к потребителям (нагрузке): электрическим лампочкам EL1 и EL2.

Все устройства и объекты, входящие в состав электрической цепи, могут быть разделены на три группы:

1) Источники электрической энергии (питания).

Общим свойством всех источников питания является преобразование какого-либо вида энергии в электрическую. Источники, в которых происходит преобразование неэлектрической энергии в электрическую, называются первичными источниками. Вторичные источники – это такие источники, у которых и на входе, и на выходе – электрическая энергия (например, выпрямительные устройства).

2) Потребители электрической энергии.

Общим свойством всех потребителей является преобразование электроэнергии в другие виды энергии (например, нагревательный прибор). Иногда потребители называют нагрузкой.

3) Вспомогательные элементы цепи:

соединительные провода, коммутационная аппаратура, аппаратура защиты, измерительные приборы и т.д., без которых реальная цепь не работает.

Все элементы цепи охвачены одним электромагнитным процессом.

Совокупность электротехнических устройств рас­сматривают как электрическую цепь, состоящую из источников и приемников электрической энергии, характеризуемых э. д. с., током I, напряжением U и электрическим со­противлением постоянному току R (для элект­ротехнических устройств постоянного тока). Источники и приемники электрической энергии, являющиеся основными элементами электриче­ской цепи, соединяют проводами для обеспече­ния замкнутого пути для электрического тока. Для включения и отключения электротехнических устройств применяют коммутационную ап­паратуру (выключатели, рубильники, тумбле­ры). Кроме этих элементов в электрическую цепь могут включать­ся электрические приборы для измерения тока, напряжения, мощ­ности.

1.3. Схемы замещения электрических цепей

Наиболее абстрактное представление об электрической цепи дают схемы замещения. Они предназначены для исследования электромагнитных процессов и являются расчётной моделью соответствующего устройства.

Реальные элементы электрической цепи заменяют в схеме замещения расчётными моделями, в которых учитывают только существенные параметры и свойства. Так химический источник (аккумулятор) заменяют идеальным источником ЭДС E и включают последовательно с ним резистор r, соответствующий потерям энергии внутри аккумулятора. Амперметр и вольтметр заменяют их входными сопротивлениями (RA и RV). Соединительные провода считаются идеальными проводниками без потерь, т.е. обладающими нулевым сопротивлением. Если входное сопротивление амперметра RA существенно меньше сопротивления лампы накаливания RL, а входное сопротивление вольтметра RV существенно больше, то их исключают из схемы замещения. Если параметры всех элементов схемы замещения известны, то, пользуясь законами электротехники, можно определить их состояние в любой момент времени.

В любой схеме электрической цепи можно выделить один или несколько участков, подключённых к остальной части двумя проводами. Такой участок электрической цепи называется двухполюсником. В простейшем случае двухполюсник состоит из одного элемента цепи, например, лампа накаливания, вольтметр и амперметр.

Если двухполюсник не содержит источников электрической энергии, то он называется пассивным, в противном случае двухполюсник относится к активным двухполюсникам.

При анализе процессов в электрических цепях используют некоторые топологические (геометрические) понятия. К ним относятся понятия узла, ветви и контура.

Узлом электрической цепи называют соединение трёх и более элементов.

Ветвью электрической цепи называют связную совокупность элементов, образующих путь для протекания тока между двумя узлами.

Из признака отсутствия узлов внутри ветви следует, что по всем её элементам протекает одинаковый ток.

Контуром называется замкнутый путь вдоль ветвей электрической цепи.

Узлы, ветви и контуры являются топологическими параметрами цепи и не изменяются при любых преобразованиях схемы, производимых без разрыва связей.

Элементы электрической цепи

Каждая электрическая цепь включает в себя различные устройства и объекты, создающие пути для прохождения электрического тока. Для описания электромагнитных процессов, происходящих в каждом из них, применяются такие понятия, как электродвижущая сила, ток и напряжение.

Условно все элементы электрической цепи разделяются на три составные части:

  • Первая представлена источниками питания, вырабатывающими электроэнергию.
  • Вторая – элементами, преобразующими электричество в другие виды энергии. Они больше известны, как приемники.
  • Третья часть состоит из передающих устройств – проводов и других установок, обеспечивающих уровень и качество напряжения.
  1. Схемы электрических цепей
  2. Активные и пассивные элементы электрической цепи
  3. Условные обозначения элементов электрической цепи
  4. Трехфазные электрические цепи

Схемы электрических цепей

Элементы электрических цепей могут соединяться в схемах различными способами. Для каждого из них существуют определенные закономерности, установленные и сформулированные учеными Омом и Кирхгофом. Соединение потребителей в электрических цепях может быть последовательным, параллельным и комбинированным.

Последовательное соединение. В этом случае с увеличением количества потребителей, происходит рост общего сопротивления цепи. Отсюда следует, что значение общего сопротивления будет состоять из суммы сопротивлений каждой подключенной нагрузки. Поскольку на всех участках цепи проходит одинаковый ток, в связи с этим на каждый элемент распределяется только часть общего напряжения. Если какой-либо прибор или устройство перестает работать, наступает разрыв цепи. То есть, при выходе из строя хотя бы одной лампочки, остальные тоже не будут работать, как это случается, например, в елочных гирляндах. Однако в последовательную цепь можно включить большое количество элементов, каждый из которых рассчитан на значительно меньшее сетевое напряжение.

Параллельное соединение. В этом случае к двум точкам электрической цепи подключается сразу несколько потребителей. Напряжение на каждом участке будет равно напряжению, приложенному к каждой узловой точке.

На представленной схеме хорошо просматривается возможность протекания тока различными путями. Ток, притекающий к месту разветвления, далее проходит к двум нагрузкам, имеющим определенное сопротивление. В результате, он оказывается равным сумме токов, расходящихся от данной точки. Происходит снижение общего сопротивления цепи с увеличением ее общей проводимости, состоящей из проводимостей обеих ветвей. Соединение обеспечивает независимую работу потребителей. То есть, при выходе из строя одного из них, остальные будут нормально работать, поскольку цепь остается не разорванной.

Комбинированное соединение. На практике большинство приборов могут включаться в цепь сразу обоими способами – последовательно и параллельно. Поэтому такие соединения получили название комбинированных. Например, выключатели и вся автоматическая защитная аппаратура соединяется последовательно, обеспечивая тем самым разрыв цепи. Розетки или лампочки, наоборот, всегда включаются параллельно, чтобы исключить их взаимодействие между собой.

Применение такого подключения вызвано еще и различным энергопотреблением бытовых электроприборов. При постоянном напряжении их сопротивления также будут различаться между собой. Таким образом, за счет комбинированного подключения удается равномерно распределить нагрузку на линиях и не допустить перегрузок на отдельных участках цепи.

Активные и пассивные элементы электрической цепи

Элементы, входящие в состав электрических цепей, могут быть активными и пассивными. Основным признаком активных составляющих, считается их способность отдавать электроэнергию. Типичными представителями являются генераторы и другие источники электроэнергии, усилители электрических сигналов и другие. Пассивными элементами считаются различные виды потребителей и накопителей электрической энергии. К ним относятся конденсаторы, резисторы, катушки индуктивности и другие двухполюсные устройства. Существует многополюсная аппаратура, функционирующая на базе двухполюсных элементов.

Все активные элементы электрической цепи могут быть независимыми и зависимыми. В первую категорию входят источники напряжения и тока. В свою очередь, источник напряжения считается идеализированным элементом цепи, у которого напряжение на зажимах не зависит от протекающего через него электрического тока, а внутреннее сопротивление имеет нулевое значение. Источник тока также является безупречным элементом, у которого ток не зависит от напряжения на зажимах, а значение внутреннего сопротивления стремится к бесконечности.

Зависимые источники напряжения и тока именуются таковыми, когда эти величины зависят от параметров напряжения и тока на другом участке цепи. Типичными представителями являются электролампы, транзисторы, усилители, функционирующие в линейном режиме. Основные пассивные элементы электрической цепи представлены резисторами, индуктивными катушками и конденсаторами, с помощью которых регулируются параметры тока и напряжения на отдельных участках.

Резистивное сопротивление относится к идеализированным элементам цепи. Его основным свойством является необратимое рассеивание энергии. Зависимость напряжения и тока резистивного сопротивления выражается формулами: u = iR, i = Gu, в которых R является сопротивлением, измеряемым в Омах, а G – проводимостью, измеряемой в сименсах. Соотношение этих величин между собой выражено формулой R = 1/G.

Идеализированные индуктивные элементы цепи способны накапливать энергию магнитного поля. Основным параметром считается линейная индуктивность, находящаяся в линейной зависимости между магнитным потоком и током, графически представляющая собой вебер-амперную черту. Индуктивность является также и коэффициентом пропорциональности, измеряемом в Генри.

Ёмкостные элементы – конденсаторы обладают свойством накапливать энергию электрического поля. Показатель линейной емкости представляет собой линейную зависимость между зарядом и напряжением, выраженной формулой q = Cu.

Читайте также  Как правильно пользоваться электрической зубной щеткой

Условные обозначения элементов электрической цепи

Для удобства анализа и расчетов электрических цепей, все их составляющие отображаются в виде специальных схем. Данные схемы состоят из условных обозначений используемых элементов и способов их соединения. Условные обозначения в странах СНГ могут отличаться от символики, принятой в других государствах, соответственно, будут различаться и сами схемы, поскольку использовались различные системы графических маркировок.

Все элементы на схемах условно разделяются на три группы:

  1. К первой относятся источники питания, преобразующие другие виды энергии в электрическую. В этом случае они считаются первичными. Ко вторичным источникам относятся, например, выпрямительные устройства, у которых электроэнергия имеется на входе и на выходе.
  2. Вторая группа представлена потребителями энергии, преобразующими электрический ток в тепло, освещение, движение и т.д.
  3. В третью группу входят управляющие элементы, без которых невозможна работа любой цепи. Сюда входят соединительные провода, коммутационная аппаратура, измерительные приборы и другие устройства аналогичного назначения.

Все эти составляющие охвачены единым электромагнитным процессом, поэтому они включаются в общую схему с использованием специальных условных знаков. Следует учитывать, что вспомогательные элементы могут не указываться на схемах. Не указываются и соединительные провода, если их сопротивление значительно ниже, чем у составных элементов. Источники питания обозначаются в виде электродвижущей силы. При необходимости проставляются пояснительные надписи.

Трехфазные электрические цепи

Любая трехфазная система состоит из трех отдельных электрических цепей, в каждой из которых действует синусоидальная электродвижущая сила с одинаковой частотой, создаваемая одним и тем же источником энергии. Необходимая энергия обычно создается трехфазным генератором. Между цепями образуется сдвиг на 120 градусов.

Основным преимуществом трехфазной цепи считается ее уравновешенность. Она заключается в суммарной мгновенной мощности, принимающей постоянную величину на все время действия ЭДС. В самом трехфазном генераторе существует три самостоятельные обмотки, сдвинутые относительно друг друга на 120 градусов, так же как и начальные фазы электродвижущей силы.

Если для соединения каждой фазы использовать отдельный провод, то в конечном итоге это привело бы к созданию несвязной системы из шести проводников. Прежде всего, это невыгодно с точки зрения экономии, поскольку получается значительный перерасход материалов. Поэтому были разработаны наиболее оптимальные связанные системы соединения трехфазных электрических цепей.

Одним из таких способов является соединение звездой, когда все три фазы обмоток соединяются в общей нулевой точке. Таким образом, получается трех- или четырехпроводная система. В последнем варианте предполагается использование нулевого провода. Он может не применяться при наличии симметричной системы, с одинаковыми токами фаз. Однако в случае несимметричной нагрузки с разницей фазных токов, в нулевом проводе создается ток, равный сумме векторов этих фазных токов. При выходе из строя одной из фаз, нулевой провод может заменить ее и предотвратить аварийную ситуацию в трехфазной цепи. Однако в этом качестве его можно использовать лишь кратковременно, поскольку данный провод рассчитан на более низкие нагрузки, по сравнению с фазами.

Другой способ – соединение треугольником, когда конец одной обмотки соединяется с началом другой, образуя, таким образом, замкнутый контур. Каждая фаза находится под линейным напряжением, равным фазному напряжению. Однако фазный ток будет отличаться от линейного в меньшую сторону в 1,72 раза.

Схема электрической цепи

Буквенные обозначения элементов на электрических схемах

Электрические цепи: элементы, классификация, расчёт

Этот материал для тех, кто только начинает изучать теорию электрических цепей. Постараемся разобрать основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!

Электрические цепи

Электрическая цепь – это совокупность устройств, по которым течет электрический ток.

Рассмотрим самую простую электрическую цепь. Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

Электрическая цепь – это соединенные между собой источник тока, линии передачи и приемник.

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.

По какому фундаментальному признаку можно разделить все цепи электрического тока? По тому же, что и ток! Есть цепи постоянного тока, а есть – переменного. В цепи постоянного тока он не меняет своего направления, полярность источника постоянна. Переменный же ток периодически изменяется во времени как по направлению, так и по величине.

Сейчас переменный ток используется повсеместно. О том, что для этого сделал Никола Тесла, читайте в нашей статье.

Элементы электрических цепей

Все элементы электрических цепей можно разделить на активные и пассивные. Активные элементы цепи – это те элементы, которые индуцируют ЭДС. К ним относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электроприемники.

Приемники и источники тока, с точки зрения топологии цепей, являются двухполюсными элементами (двухполюсниками). Для их работы необходимо два полюса, через которые они передают или принимают электрическую энергию. Устройства, по которым ток идет от источника к приемнику, являются четырехполюсниками. Чтобы передать энергию от одного двухполюсника к другому им необходимо минимум 4 контакта, соответственно для приема и передачи.

Резисторы – элементы электрической цепи, которые обладают сопротивлением. Вообще, все элементы реальных цепей, вплоть до самого маленького соединительного провода, имеют сопротивление. Однако в большинстве случаев этим можно пренебречь и при расчете считать элементы электрической цепи идеальными.

Существуют условные обозначения для изображения элементов цепи на схемах.

Обозначения элементов электрической цепи

Вольт-амперная характеристика – фундаментальная характеристика элементов цепи. Это зависимость напряжения на зажимах элемента от тока, который проходит через него. Если вольт-амперная характеристика представляет собой прямую линию, то говорят, что элемент линейный. Цепь, состоящая из линейных элементов – линейная электрическая цепь. Нелинейная электрическая цепь – такая цепь, сопротивление участков которой зависит от значений и направления токов.

Какие есть способы соединения элементов электрической цепи? Какой бы сложной ни была схема, элементы в ней соединены либо последовательно, либо параллельно.

Способы соединения элементов электрической цепи

При решении задач и анализе схем используют следующие понятия:

  • Ветвь – такой участок цепи, вдоль которого течет один и тот же ток;
  • Узел – соединение ветвей цепи;
  • Контур – последовательность ветвей, которая образует замкнутый путь. При этом один из узлов является как началом, так и концом пути, а другие узлы встречаются в контуре только один раз.

Чтобы понять, что есть что, взглянем на рисунок:

Схема электрической цепи

Классификация электрических цепей

По назначению электрические цепи бывают:

  • Силовые электрические цепи;
  • Электрические цепи управления;
  • Электрические цепи измерения;

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Расчет электрических цепей

Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.

Электрическая цепь

Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:

Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector