К статическим параметрам полупроводникового диода не относится

К статическим параметрам полупроводникового диода не относится

К статическим параметрам полупроводникового диода не относится

К статическим параметрам полупроводникового диода не относится

Вопрос 1
Ток измеряется в следующих единицах:
ампер (А):
Вопрос 2
При применении метода последовательного преобразования резистивной схемы эквивалентное сопротивление равно:
алгебраической сумме сопротивлений резистивных элементов
Вопрос 3
При наличии полной симметрии между схемами резистивных цепей звезда – треугольник величина сопротивления элемента схемы треугольник:
равна трем величинам сопротивления элемента схемы звезда
Вопрос 4
В индуктивном элементе (реактивное сопротивление) происходит:
запасание магнитной энергии
Вопрос 5
По закону Ома для цепи, не содержащей ЭДС:
сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению
Вопрос 6
Значение индуктивности прямо пропорционально:
потокосцеплению
Вопрос 7
В резистивном элементе происходит:
необратимое преобразование электромагнитной энергии в тепло или другие виды энергии
Вопрос 8
При применении метода параллельного преобразования резистивной схемы эквивалентная проводимость равна:
алгебраической сумме проводимостей резистивных элементов
Вопрос 9
К приемнику электрической энергии относится:
электронагреватель
Вопрос 10
При расчете цепи методом контурных токов применяются:
второй закон Кирхгофа в сочетании с принципом наложения
Вопрос 11
В емкостном элементе (реактивное сопротивление) происходит:
запасание электрической энергии
Вопрос 12
Величина магнитного потока измеряется в следующих единицах:
вебер (Вб)
Вопрос 13
Какое из понятий не характеризует геометрию цепи:
«элемент»
Вопрос 14
Электрический ток определяется как:
скорость изменения электрического заряда во времени
Вопрос 15
К источнику электрической энергии относится:
аккумулятор
Вопрос 16
Какое сходство у идеализированных источников напряжения и тока:
способны отдавать в электрическую цепь неограниченную мощность
Вопрос 17
Электрическая проводимость обратно пропорциональна:
электрическому сопротивлению
Вопрос 18
По второму закону Кирхгофа в любом замкнутом контуре электрической цепи:
алгебраическая сумма па¬дений напряжений на элементах, входящих в контур, равна алгебраической сумме ЭДС
Вопрос 19
Электрическая мощность измеряется в следующих единицах:
ватт (Вт)
Вопрос 20
По принципу наложения ток в любой ветви сложной схемы, содержащей несколько источников, равен:
алгебраической сумме частичных токов, возникающих в этой ветви от независи¬мого действия каждого источника в от¬дельности
Вопрос 21
Напряжение измеряется в следующих единицах:
вольт (В)
Вопрос 22
Первый закон Кирхгофа гласит:
сумма токов, подходящих к узлу, равна сумме токов, выходящих из узла
Вопрос 23
Электрическое напряжение – это:
энергия, расходуемая на перемещение единицы заряда
Вопрос 24
Электрическая мощность связана с величиной напряжения:
прямо пропорциональной зависимостью
Вопрос 25
При методе расчета цепей с помощью законов Кирхгофа действует следующее правило выбора контуров для составления уравнений:
каждый последующий контур должен включать в себя хотя бы одну новую ветвь, не охвачен¬ную предыдущими уравнениями

Вопрос 1
В цепи синусоидального тока с катушкой индуктивности:
напряжение опережает ток на угол 90º
Вопрос 2
Комплексное число нельзя представить в следующей форме:
квадратичной
Вопрос 3
Если сдвиг фаз между током и напряжением меньше нуля, то:
напряжение отстает по фазе от тока .
Вопрос 4
Электрические величины гармонических функций нельзя представить:
вещественными числами
Вопрос 5
Наиболее распространенный переменный ток изменяется в соответствии с функцией:
синус
Вопрос 6
По закону Ома в комплексной форме:
комплексное значение тока прямо пропорционально комплексному значению напряжения и обратно пропорционально комплексному значению сопротивления
Вопрос 7
Активная мощность активно-реактивной электрической цепи на переменном токе не зависит от:
угловой частоты гармонических колебаний
Вопрос 8
Деление комплексных чисел может выполняться:
как в алгебраической, так и в показательной формах
Вопрос 9
При последовательном соединении элементов R, L и C при положительных значениях реактивного сопротивления и угла сдвига фаз электрическая цепь в целом носит следующий характер:
активно-индуктивный
Вопрос 10
По первому закону Кирхгофа в комплексной форме:
сумма комплексных значений токов, подходящих к узлу, равна сумме комплексных значений токов, выходящих из узла
Вопрос 11
Гармоническим электрическим током называется ток, который:
изменяется во времени по своему значению и направлению через равные промежутки времени
Вопрос 12
Проекция вращающегося вектора гармонической функции на ось ординат в любой момент времени, равна:
мгновенному значению функции времени
Вопрос 13
Коэффициент отношения действующего значения синусоидального напряжения к его амплитудному значению составляет:
1.11
Вопрос 14
В цепи синусоидального тока с конденсато¬ром С происходит:
обратимый процесс обмена энергией между электрическим полем конденсатора и источником
Вопрос 15
Какое из свойств не относится к гармоническому току:
после многократной трансформации форма сигнала изменяется
Вопрос 16
В цепи синусоидального тока с конденсатором:
напряжение отстает от тока на угол 90º
Вопрос 17
В цепи синусоидального тока с резистивным элементом:
ток и напряжение совпадают по фазе
Вопрос 18
Угловая частота синусоидального тока:
обратно пропорциональна периоду колебаний
Вопрос 19
Коэффициент отношения среднего значения синусоидального тока к его максимальному значению составляет:
0.637
Вопрос 20
По второму закону Кирхгофа в комплексной форме в любом замкнутом контуре электрической цепи:
алгебраическая сумма комплексных значений напряжений на сопротивлениях контура равна алгебраической сумме комплексных значений ЭДС
Вопрос 21
К характеристикам гармонического тока не относится:
минимальные значения тока и напряжения
Вопрос 22
При последовательном соединении элементов R, L и C при отрицательных значениях реактивного сопротивления и угла сдвига фаз электрическая цепь в целом носит следующий характер:
активно-емкостный
Вопрос 23
Активная мощность в цепи синусоидального тока с резистивным элементом всегда больше нуля, что означает:
в цепи с резистором протекает необратимый процесс преобразования электроэнергии в другие виды энергии
Вопрос 24
Амплитудные значения гармонического тока:
равны мгновенному значению тока в определенный момент времени
Вопрос 25
На практике единицей измерения полной мощности в гармонических цепях является:
вольт-ампер (ВА)

Вопрос 1
Какой электрод называется катодом?
электрод диода, подключенный к области N
Вопрос 2
Какой из материалов наиболее часто используют для изготовления светодиодов?
фосфит или арсенид галлия
Вопрос 3
Какой элемент не относится к чистым полупроводниковым элементам?
вольфрам
Вопрос 4
Назовите один из двух типов примесей, используемых в процессе легирования:
пятивалентная
Вопрос 5
Диоды с барьером Шотки используются для выпрямления
малых напряжений высокой частоты
Вопрос 6
К статическим параметрам силового диода не относится:
время восстановления обратного напряжения
Вопрос 7
Что является признаком того, что диод находится в запертом состоянии?
ток, протекающий через диод, равен нулю
Вопрос 8
В туннельном диоде электроны проходят через p-n-переход очень
быстро из-за малой толщины обедненного слоя перехода
Вопрос 9
Теоретическое значение емкости варикапа не зависит от
максимальной емкости варикапа
Вопрос 10
Какая характеристика не относится к фотодиоду?
скорость изменения барьерной емкости
Вопрос 11
При работе фотодиода в режиме короткого замыкания наблюдается:
прямая пропорциональность между током в диоде и световым потоком
Вопрос 12
Какой участок не относится к вольт-амперной характеристике туннельного диода?
участок, на котором ток не изменяется
Вопрос 13
Стабилитроны используются для:
поддержания напряжения источника питания на заданном уровне
Вопрос 14
Какой из параметров не относится к основным параметрам стабилитрона?
добротность
Вопрос 15
Полная емкость p-n-перехода при обратном смещении равна
барьерной емкости
Вопрос 16
Обращенные диоды применяются для выпрямления очень
малых напряжений на сверхвысоких частотах
Вопрос 17
Коэффициент перекрытия варикапа по емкости равен
отношению максимальной емкости варикапа к его минимальной емкости
Вопрос 18
Для какого электронного оборудования полупроводники, как правило, не являются основными компонентами?
потенциометр
Вопрос 19
Какой из нижеперечисленных материалов, в основном, применяется для изготовления выпрямительных диодов большой мощности?
кремний
Вопрос 20
В варикапах используется следующее свойство p-n-перехода:
барьерная емкость
Вопрос 21
К динамическим параметрам силового диода не относится:
падение напряжения на диоде при некотором значении прямого тока
Вопрос 22
Что не относится к технологическому процессу создания электронно-дырочного перехода?
нагревание
Вопрос 23
В светоизлучающих диодах при фотонной рекомбинации электронов и дырок происходит:
излучение света
Вопрос 24
Выпрямительные диоды предназначены для:
преобразования переменного тока в постоянный ток
Вопрос 25
Полная емкость p-n-перехода при прямом смещении равна
сумме барьерной и диффузной емкостей
Вопрос 26
В стабилитронах используется следующее свойство p-n-перехода:
лавинный пробой

Режимы насыщения и отсечки

Исследование статических и динамических характеристик полупроводниковых диодов и транзисторов

Цель работы: Цель работы: исследование вольт-амперных и динамических характеристик работы полупроводниковых диодов и транзисторов, а также общих принципов их использования в электронных цепях.

Полупроводниковые диоды

Диод представляет собой полупроводниковый элемент с двумя выводами, один из которых называют анодом (А), а другой – катодом (К). Различают дискретные диоды в виде отдельного элемента, предназначенного для монтажа на плате и заключенного в собственный корпус, и интегральные диоды, которые вместе с другими элементами схемы изготавливаются на общей полупроводниковой подложке. У интегральных диодов имеется третий вывод, необходимый для соединения с общей подложкой.

Материалом для таких диодов обычно служит кремний или арсенид галлия.. Кремниевые сплавные диоды используются для выпрямления переменного тока с частотой до 5 кГц. Кремниевые диффузионные диоды могут работать на повышенной частоте, до 100 кГц. Кремниевые эпитаксиальные диоды с металли­ческой подложкой (с барьером Шотки) могут использоваться на частотах до 500 кГц. Арсенидгаллиевые диоды способны работать в диапазоне частот до не­скольких МГц.

При большом токе через р-n-переход значительное напряжение падает в объе­ме полупроводника, и пренебрегать им нельзя. Вольт-амперная характеристика выпрямительного диода имеет вид

где R — сопротивление объема полупроводникового кристалла, которое называ­ют последовательным сопротивлением.

Условное графическое обозначение полупроводникового диода приведено на рис. 1.1 а, а его структура на рис. 1.1 б. Электрод диода, подключенный к области Р, называют анодом, а электрод, под­ключенный к области N, — катодом. Статическая вольт-амперная характеристика диода показана на рис. 1.1 в.

Рис. 1.1 Условное обозначение полупроводникового диода (а),его структура (б) и вольт-амперная характеристика (в)

Силовые диоды обычно характеризуют набором статических и динамических параметров. К статическим параметрам диода относятся:

· падение напряжения Unpна диоде при некотором значении прямого тока;

· обратный ток Iобр при некотором значении обратного напряжения;

· среднее значение прямого тока Iпр.ср;

· импульсное обратное напряжение Uoбpм.

К динамическим параметрам диода относятся его временные или частотные характеристики. К таким параметрам относятся:

· время восстановления tвособратного напряжения;

· время нарастания прямого тока tнар;

· время рассасывания избыточного заряда базы tрас.

Статические параметры можно установить по вольт-амперной характеристике диода, которая приведена на рис. 1.1 в

Динамические характеристики диода

Время обратного восстановлениядиода tвосявляется основным параметром выпрямительных диодов, характеризующим их инерционные свойства. Оно определяется при переключении диода с заданного прямого тока Iпрна заданное об­ратное напряжение Uобр.Графики такого переключения приведены на рис. Схема испытания, представляет собой однополупериодный выпрямитель, работающий на резистивную нагрузку и питаемый от источ­ника напряжения прямоугольный формы.

Напряжение на входе схемы в момент времени t=0 скачком приобретает положительное значение Um. Из-за инерционности диффузионного процесса ток в диоде появляется не мгновенно, а нарастает в течение времени tнар. Совместно с нарастанием тока в диоде снижается напряжение на диоде, которое после tнар становится равным Unp. В момент времени t1в цепи устанавливается стационар­ный режим, при котором ток диода i=Iн — Um/Rн.

Такое положение сохраняется вплоть до момента времени t2, когда поляр­ность напряжения питания меняется на противоположную. Однако заряды, накопленные на границе p-n-перехода, некоторое время поддерживают диод в открытом состоянии, но направление тока в диоде меняется на противополож­ное. По существу, происходит рассасывание зарядов на границе p-n -перехода (т. е. разряд эквивалентной емкости). После интервала времени рассасывани начинается процесс выключения диода, т. е. процесс восстановления его запирающих свойств

Стабилитроны

Стабилитрон – это диод с точно заданным напряжением пробоя, рассчитанный на непрерывную работу в области пробоя и предназначенный для стабилизации или ограничения напряжения. Напряжение пробоя UBR стабилитронов обозначается символом UZ и у стандартных образцов составляет UZ ≈ 3…400 В. Условное графическое обозначение и вольтамперная характеристика стабилитрона представлены на рис. 1.3 .

Рис. 1.3 Стабилитрон: а – условное обозначение; б – вольтамперная характеристика

Напряжение зенеровского пробоя UZ зависит от температуры. Температурный коэффициент описывает относительное изменение напряжения пробоя при постоянном токе:

Дифференциальное сопротивление в области пробоя rZ соответствует обратной величине наклона вольтамперной характеристики.

Рис. 1. 4. Стабилизация напряжения с помощью стабилитрона: а – схема; б – вольтамперная характеристика

Биполярные транзисторы

Транзистор — это полупроводниковый прибор с двумя p-n-переходами, имеющий три вывода. В зависимости от чередования областей полупроводников с различными типами электропроводности различают транзисторы типа p-n-p и типа n-p-n. Их схематическое устройство и условное графическое обозначение показано на рисунке 4.2.

Центральный слой транзистора называют базой (Б), наружный слой, являющийся источником зарядов (электронов или дырок), – эмиттером(Э), а наружный слой, принимающий заряды, – коллектором(К).

На переход эмиттер – база напряжение источника Еэ подается в прямом направлении, и прямое сопротивление перехода мало, поэтому даже при малых Еэ возникает значительный ток эмиттер – база Iэ. На переход коллектор-база напряжение источника Ек подается в обратном направлении.

Рассмотрим работу транзистора типа p-n-p (рисунок 1.5) (транзистор типа n-p-n работает аналогично). При отсутствии источника Еэ эмиттерный ток Iэ=0, и в транзисторе через коллекторный переход в обратном направлении протекает малый ток (у кремниевых транзисторов Iк о= 0,1 . 10 мкА).

При подключении источника Еэ возникает эмиттерный ток Iэ: дырки преодолевают переход эмиттер-база и попадают в область базы, где частично рекомбинируют со свободными электронами базы. Убыль электронов в базе пополняется электронами, поступающими из внешней цепи, образуя ток базы Iб. Благодаря диффузии часть дырок в базе, продолжая движение, доходит до коллектора и под действием электрического поля источника Ек проходит коллекторный p-n-переход. В цепи база-коллектор протекает ток Iк=IэIб.

Соотношение между приращениями эмиттерного и коллекторного токов характеризуют коэффициентом передачи тока

Так как DIк 0. В любом случае при переходе в режим насыщения в базе протекает избыточный ток, т. е. ток базы превышает значение, необходимое для получения данного тока коллектора при работе транзистора в линейном режиме.

При глубоком насыщении транзистора в базе накапливается большое количе­ство неосновных носителей, которые задерживают выключение транзистора.

Поскольку в режиме насыщения напряжение между коллектором и эмиттером достаточно малое, то в этом режиме транзистор можно заменить замкнутым ключом, на котором падает небольшое напряжение. Схема замещения транзистора в режиме насыщения приведена на рис.. В соответствии с этой схемой замещения напряжение на насыщенном ключе определяется по формуле

Другим ключевым режимом биполярного транзистора является режим отсечки. Перевести транзистор в режим отсечки можно приложением между базой и эмиттером обратного напряжения. Граничным режимом в этом случае является выполнение условия Ubэ = 0. В режиме отсечки транзистор можно заменить разом­кнутым ключом, схема замещения которого приведена на рис.1.7 б. В соответ­ствии с этой схемой замещения транзистор в режиме отсечки имеет некоторое достаточно большое сопротивление Ro и параллельно включенный ему генератор небольшого тока утечки На вольт-амперных характеристиках транзисто­ра, приведенных на рис. 1.6а, режиму отсечки соответствует горизонтальная ли­ния при Iб=0.

Характеристики и параметры полупроводникового диода

Вольт-амперная характеристика (ВАХ) полупроводникового Вольт-амперная характеристика (ВАХ) полупроводникового диода на постоянном токе (статическая характеристика).

Вольт-амперная характеристика — это зависимость тока i, протекающего через диод, от напряжения u , приложенного к диоду (рис. 1.25). Вольт-амперной характеристикой называют и график этой зависимости.

Вначале будем полагать (см. рис. 1.25), что обратное напряжение (u u /φr- 1)

Тепловой ток is обусловлен генерацией неосновных носителей в областях, прилегающих к области p-n-перехода. Однако часто это идеализированное описание дает неприемлемую погрешность. Особенно большая погрешность возникает при вычислении тока диода, включенного в обратном направлении (U > (φт)) для кремниевых диодов оказывается на несколько порядков меньше реального. В то же время стоит отметить, что в некоторых расчетах обратным током вообще можно пренебречь.

Укажем причины отличия характеристик реальных диодов от идеализированных. Обратимся к прямой ветви вольт-амперной характеристики диода (u> 0,i> 0). Она отличается от идеализированной из-за того, что в реальном случае на нее влияют:

  • сопротивления слоев полупроводника (особенно базы);
  • сопротивления контактов металл-полупроводник.

Важно отметить, что сопротивление базы может существенно зависеть от уровня инжекции (уровень инжекции показывает, как соотносится концентрация инжектированных неосновных носителей в базе на границе перехода с концентрацией основных носителей в базе). Влияние указанных сопротивлений приводит к тому, что напряжение на реальном диоде при заданном токе несколько больше (обычно на доли вольта), чем это следует из формулы.

Обратимся к обратной ветви (u

Обратимся к режиму пробоя полупроводникового диода и соответствующему участку обратной ветви вольт-амперной характеристики (на рис. 1.27 этот участок не показан).

Диоды многих конкретных типономиналов не предназначены для работы в режиме пробоя. Для них этот режим работы — аварийный. Если при пробое ток в цепи не ограничивается (например, внешним сопротивлением), то диод выходит из строя. В таких приборах при чрезмерном увеличении обратного напряжения (по модулю) практически сразу же начинается тепловой пробой (участок электрического пробоя практически отсутствует).

Напряжение начала пробоя для рассматриваемых диодов — величина нестабильная (пробой начинается при u= -u роб, где uпроб— так называемое напряжение пробоя — положительная величина). Изобразим соответствующую вольт-амперную характеристику (рис. 1.28).

Диоды некоторых конкретных типов спроектированы с расчетом на работу в режиме лавинного пробоя в течение некоторого короткого времени. Такие диоды называют лавинными. Если отрезок времени, в течение которого диод находится в режиме лавинного пробоя, невелик, то его p-n-переход не успевает перегреться и диод не выходит из строя.

Иначе лавинный пробой перейдет в тепловой и диод выйдет из строя.

Изобразим вольт-амперную характеристику для лавинного диода (рис. 1.29).

Лавинные диоды, как правило, более надежны в сравнении с обычными кратковременные (перенапряжения не выводят лавинный диод из строя).

Для некоторых конкретных типов диодов режим пробоя является основным рабочим режимом. Это так называемые стабилитроны, рассматриваемые ниже.

  1. Зависимость барьерной емкости диода от напряжения.
  2. Временные диаграммы тока и напряжения диода при его переключении.
  3. Параметры диодов.

Зависимость барьерной емкости диода от напряжения.

Приведем график зависимости общей емкости Сд кремниевого диода 2Д212А от обратного напряжения (основной вклад в общую емкость вносит барьерная емкость) (рис. 1.30).

Для этого диода максимальный постоянный (средний) прямой ток — 1 А, максимальное постоянное (импульсное) обратное напряжение — 200 В.

Временные диаграммы тока и напряжения диода при его переключении.

Обратимся к схеме на рис. 1.31. Предполагается, что вначале ключ К подключает источник напряжения u1, а затем, в момент времени t = 0, источник напряжения u2.

Предполагается также, что напряжения u1 и u2 значительно больше прямого падения напряжения на диоде. Изобразим соответствующие временные диаграммы (рис. 1.32).

До момента времени t = 0 протекает ток i1, который с учетом принятого условия u1>>u определяется выражением i1=u1/R/ Сразу после переключения ключа К и в течение так называемого времени рассасывания tрас протекает ток i2, который ограничивается практически только сопротивлением R, т. е. i2= — (u1/R). В этот отрезок времени в базе диода уменьшается (рассасывается) заряд накопленных при протекании тока неравновесных носителей. Заряд уменьшается в результате рекомбинации и перехода неосновных носителей в эмиттер.

По истечении времени tpac концентрация неосновных носителей в базе на границе p-n-перехода становится равной равновесной. В глубине же базы неравновесный заряд еще существует. Длительность времени рассасывания прямо пропорциональна среднему времени жизни неосновных носителей в базе и зависит от соотношения токов i1 и i2 (чем больше по модулю ток i2, тем меньше, при заданном токе i1, время рассасывания).

В момент времени t1 напряжение на диоде начинает быстро возрастать по модулю, а ток i уменьшаться по модулю (спадать). Соответствующий отрезок времени tcп называют временем спада. Время спада отсчитывают до того момента t2 которому соответствует достаточно малое (по модулю) значение тока i3.

Время спада зависит от времени жизни носителей, а также от барьерной емкости диода и от сопротивления R схемы.

Чем больше указанные емкость и сопротивление R, тем медленнее спадает ток.

Отрезок времени tвос = tpac + tcп называется временем восстановления (временем обратного восстановления).

После завершения переходного процесса (момент времени t3) через диод течет ток iобр ycm — обратный ток в установившемся режиме (определяемый по статической вольт-амперной характеристике диода).

Для упомянутого выше диода 2Д212А типовое время восстановления — 150 нc (150 · 10

9 с) при i1 = 2 А (импульсный ток) и i2 = 0,2 А.

Параметры диодов.

Для того, чтобы количественно охарактеризовать диоды, используют большое количество (измеряемое десятками) различных параметров. Некоторые параметры характеризуют диоды самых различных подклассов.

Другие же характеризуют специфические свойства диодов только конкретных подклассов.

Укажем наиболее широко используемые параметры, применяемые к диодам различных подклассов:

Читайте также  Идеи для романтики девушке

Iпр макс — максимально допустимый постоянный прямой ток;

Uпp — постоянное прямое напряжение, соответствующее заданному току;

Uобр макс — максимально допустимое обратное напряжение диода (положительная величина);

Iобр макс — максимально допустимый постоянный обратный ток диода (положительная величина; если реальный ток больше, чем Iобр макс , то диод считается непригодным к использованию);

Rдиф — дифференциальное сопротивление диода (при заданном режиме работы).

В настоящее время существуют диоды, предназначенные для работы в очень широком диапазоне токов и напряжений. Для наиболее мощных диодов Iпр макс составляет килоамперы, a Uобр макс — киловольты.

К статическим параметрам полупроводникового диода не относится

Ознакомиться с основными фотометрическими величинами; ознакомиться с принципом работы фотометра; проверить выполнение закона Ламберта для источника света

Общие сведения

Полупроводниковые диоды и стабилитроны

Выпрямительные диоды и стабилитроны представляют собой полупроводниковые приборы с одним электронно-дырочным переходом (p–n-переходом).

Одним из свойств p–n-перехода является способность изменять свое сопротивление в зависимости от полярности напряжения внешнего источника. Причем разница сопротивлений при прямом и обратном направлениях тока через p–n-переход может быть настолько велика, что в ряде случаев, например для силовых диодов, можно считать, что ток протекает через диод только в одном направлении – прямом, а в обратном направлении ток настолько мал, что им можно пренебречь. Прямое направление – это когда электрическое поле внешнего источника направлено навстречу электрическому полю p–n- перехода, а обратное – когда направления этих электрических полей совпадают. Полупроводниковые диоды, использующие вентильное свойство p–n-перехода, называются выпрямительными диодами и широко используются в различных устройствах для выпрямления переменного тока.

Вольт-амперная характеристика (ВАХ) идеализированного p–n-перехода описывается известным уравнением

где (I_0) – обратный ток p–n-перехода; (q) – заряд электрона (q=1,6cdot 10^<-19> Кл); (k) – постоянная Больцмана (k = 1,38⋅10^ <-23>Джcdot град); (T) – температура в градусах Кельвина.

Графическое изображение этой зависимости представлено на рис. 1.1.

Вольт-амперная характеристика имеет явно выраженную нелинейность, что предопределяет зависимость сопротивления диода от положения рабочей точки.

Различают сопротивление статическое (R_<ст>) и динамическое (R_<дин>). Статическое сопротивление (R_<ст>), например в точке А (рис. 1.1), определяется как отношение напряжения (U_A) и тока (I_A), соответствующих этой точке: (R_ <ст>= frac = tg)

Динамическое сопротивление определяется как отношение приращений напряжения и тока (рис. 1.1): (R_ <дин>= frac);

При малых значениях отклонений (∆U) и (ΔI) можно пренебречь нелинейностью участка АВ характеристики и считать его гипотенузой прямоугольного треугольника АВС, тогда (R_ <дин>= tgβ).

Если продолжить линейный участок прямой ветви вольт-амперной характеристики до пересечения с осью абсцисс, то получим точку (U_0) – напряжение отсечки, которое отделяет начальный пологий участок характеристики, где динамическое сопротивление (R_<дин>) сравнительно велико от круто изменяющегося участка, где (R_<дин>) мало.

При протекании через диод прямого тока полупроводниковая структура нагревается, и если температура превысит при этом предельно допустимое значение, то произойдет разрушение кристаллической решетки полупроводника и диод выйдет из строя. Поэтому величина прямого тока диода ограничивается предельно допустимым значением (I_<пр.max>) при заданных условиях охлаждения.

Если увеличивать напряжение, приложенное в обратном направлении к диоду, то сначала обратный ток будет изменяться незначительно, а затем при определенной величине (U_<проб>) начнется его быстрое увеличение (рис. 1.2), что говорит о наступлении пробоя p–n-перехода. Существуют несколько видов пробоя p–n-перехода в зависимости от концентрации примесей в полупроводнике, от ширины p–n-перехода и температуры:

  • обратимый (электрический пробой);
  • необратимые (тепловой и поверхностный пробои).

Необратимый пробой для полупроводникового прибора является нерабочим и недопустимым режимом.

Поэтому в паспортных данных диода всегда указывается предельно допустимое обратное напряжение (U_<проб>) (напряжение лавинообразования), соответствующее началу пробоя p–n-перехода. Обратное номинальное значение напряжения составляет обычно (0,5 U_<проб>) и определяет класс прибора по напряжению. Так, класс 1 соответствует 100 В обратного напряжения, класс 2 – 200 В и т. д.

В некоторых случаях этот режим пробоя используют для получения круто нарастающего участка ВАХ, когда малому приращению напряжения (∆U) соответствует большое изменение тока (ΔI) (рис. 1.2). Диоды, работающие в таком режиме, называются стабилитронами, т. к. в рабочем диапазоне при изменении обратного тока от (i_<обр. min>) до (i_<обр. max>) напряжение на диоде остается почти неизменным, стабильным. Поэтому для стабилитронов рабочим является участок пробоя на обратной ветви ВАХ, а напряжение пробоя (напряжение стабилизации) является одним из основных параметров.

Стабилитроны находят широкое применение в качестве источников опорного напряжения, в стабилизаторах напряжения, в качестве ограничителей напряжения и др.

Эксперимент

Оборудование

Оборудование, используемое в лабораторной работе: вритуальный лабораторный стенд, блок No 1 (схемы А1–А4); комбинированный прибор «Сура», мультиметры; соединительные провода.

Порядок выполнения работы

Изучить схемы включения полупроводниковых приборов А1–А4 (рис. 1.3–1.6) для снятия вольт-амперных характеристик ВАХ диода и стабилитрона.

Ознакомиться с устройством лабораторного стенда, найти на стенде блок №1 и схемы А1–А4.

Порядок выполнения задания №1 «Исследование полупроводникового диода»

Экспериментальное получение прямой ветви ВАХ диода (I_ <пр>= f(U_<пр>)) с использованием схемы A1, представленной на рис. 1.3.
  1. Установить напряжение источника питания на 5 В
  2. Выставить значение потенциометра (R1) на максимум.
  3. Включить установку
  4. Внимательно изучить схему
  • После проверки схемы преподавателем включить сетевой тумблер.
  • Уменьшая значение потенциометра (R1), изменять прямое напряжение диода в пределах, указанных в табл. 1.1, фиксируя значения тока через каж- дые 0,1–0,05 В. Результаты измерений занести в табл. 1.1.
    Таблица 1.1
    (U_<пр>), В0.10.20.30.350.40.450.5
    (I_<пр>), A
  • Выключить установку.
  • Экспериментальное получение обратной ветви ВАХ диода (I_ <обр>= f(U_<обр>)) с использованием схемы А2, представленной на рис. 1.4.
    1. Установить напряжение блока питания 30 В.
    2. Выставить значение потенциометра (R2) на максимум
    3. Внимательно изучить схему установки
  • Включить установку
  • Уменьшая значение потенциометра (R2), изменять обратное напряжение на диоде в пределах, указанных в табл. 1.2. Значения тока фиксировать через каждые 5 В. Результаты измерений занести в табл. 1.2.
    Таблица 1.2
    (U_<обр>), В51015202530
    (I_<обр>), A
  • Выключить установку.
  • По данным табл. 1.1 и 1.2 построить ВАХ диода.

    По ВАХ или таблицам определить:
    1. Статическое сопротивление диода в прямом включении (R_<ст.пр>=frac>>) при U пр = 0,4 В и U пр = 0,1 В.
    2. Динамическое сопротивление диода в прямом включении (R_<дин.пр>=frac>>) на начальном участке ВАХ ( U пр =0 В и U пр = 0,1 В ) и на участке насыщения ВАХ ( U пр = 0,4 В и U пр = 0,45 В ).
    3. Статическое сопротивление диода в обратном включении (R_<ст.обр>=frac>>) при U обр = 5 В и U обр = 25 В.
    4. Динамическое сопротивление диода в обратном включении (R_<дин.обр>=frac>>) на начальном участке ВАХ ( U пр =0 В и U пр = 5 В ) и на участке насыщения ВАХ ( U пр = 20 В и U пр = 25 В ).

    Порядок выполнения задания No2 «Исследование полупроводникового стабилитрона»

    Экспериментальное получение прямой ветви ВАХ стабилитрона (I_ <пр>= f(U_<пр>)) с использованием схемы A3, представленной на рис. 1.5.
    1. Установить напряжение источника питания на 5 В
    2. Выставить значение потенциометра (R5) на максимум.
    3. Включить установку
    4. Внимательно изучить схему
  • После проверки схемы преподавателем включить сетевой тумблер.
  • Уменьшая значение потенциометра (R5), изменять прямое напряжение стабилитрона в пределах, указанных в табл. 1.3, фиксируя значения тока через каж- дые 0,1 В. Результаты измерений занести в табл. 1.3.
    Таблица 1.3
    (U_<пр>), В0.10.20.30.30.40.50.60.7
    (I_<пр>), A
  • Выключить установку.
  • Экспериментальное получение обратной ветви ВАХ стабилитрона (I_ <обр>= f(U_<обр>)) с использованием схемы А4, представленной на рис. 1.6.
    1. Установить напряжение блока питания 30 В.
    2. Выставить значение потенциометра (R7) на максимум
    3. Внимательно изучить схему установки
  • Включить установку
  • Уменьшая значение потенциометра (R7), изменять обратное напряжение на стабилитроне в пределах, указанных в табл. 1.4. Увеличить число фикси- руемых точек характеристики, начиная с 3 В. Для каждого значения напряжения изме- рить ток. Результаты измерений занести в табл. 1.4.
    Таблица 1.4
    (U_<обр>), В1233,544,555,25,45,6
    (I_<обр>), A
  • Выключить установку.
  • По данным табл. 1.3 и 1.4 построить ВАХ стабилитрона.

    К статическим параметрам полупроводникового диода не относится

    Полупроводниковым диодом называется электро преобразовательный полупроводниковый прибор с одним выпрямляющим электрическим переходом, имеющим два вывода.

    Структура полупроводникового диода с электронно-дырочным переходом и его условное графическое обозначение приведены на рис. 2.2.

    Рис. 2.2. Схема структуры полупроводникового диода ( а )

    и его графическое обозначение ( б )

    Буквами p и n обозначены слои полупроводника с проводимостями соответственно p -типа и n -типа. В контактирующих слоях полупроводника (область p n -перехода на рис. 2.2) имеет место диффузия дырок из слоя p в слой n , причиной которой является то, что их концентрация в слое p значительно больше их концентрации в слое n . В итоге в приграничных областях слоя p и слоя n возникает так называемый обедненный слой, в котором мала концентрация подвижных носителей заряда (электронов и дырок). Обедненный слой имеет большое удельное сопротивление.

    Ионы примесей обедненного слоя не компенсированы дырками или электронами. В совокупности ионы образуют некомпенсированные объемные заряды, создающие электрическое поле с напряженностью Е. Это поле препятствует переходу дырок из слоя p в слой n и переходу электронов из слоя n в слой p . Оно создает так называемый дрейфовый поток подвижных носителей заряда, перемещающий дырки из слоя n в слой p и электроны из слоя p в слой n . Таким образом, в зависимости от полярности проходящего через диод тока, проводимость диода существенно изменяется, приводя к изменению величину проходящего тока.

    Основные характеристики полупроводникового диода представляются его вольт-амперной характеристикой (ВАХ). Вольт-амперная характеристика – это зависимость тока i , протекающего через диод, от напряжения u , приложенного к диоду. Вольт-амперной характеристикой называют и график этой зависимости (рис. 2.3).

    Рис. 2.3. Вольт-амперная характеристика и основные параметры полупроводникового диода

    Диоды обычно характеризуются следующими параметрами (рис. 2.3):

    1. обратный ток при некоторой величине обратного напряжения I обр , мкА;

    2. падение напряжения на диоде при некотором значении прямого тока через диод U пр , в;

    3. емкость диода при подаче на него обратного напряжения некоторой величины С , пФ;

    4. диапазон частот, в котором возможна работа без снижения выпрямленного тока f гр , кГц;

    5. рабочий диапазон температур.

    Техническими условиями задаются обычно максимальные (или минимальные) значения параметров для диодов каждого типа.

    Так, например, задается максимально возможное значение обратного тока, прямого падения напряжения и емкости диода. Диапазон частот задается минимальным значением граничной частоты f гр . Это значит, что параметры всех диодов не превышает (а в случае частоты – не ниже) заданного техническими условиями значения. Общий вид диодов показан на рис 2.4.

    Рис. 2.4. Конструкция диодов малой мощности ( а ) и средней мощности ( б )

    Полупроводниковый диод

    Устройство, параметры и разновидности диодов

    В самом начале радиотехники первым активным элементом была электронная лампа. Но уже в двадцатые годы прошлого века появились первые приборы доступные для повторения радиолюбителями и ставшие очень популярными. Это детекторные приёмники. Более того они выпускались в промышленном масштабе, стоили недорого и обеспечивали приём двух-трёх отечественных радиостанций работавших в диапазонах средних и длинных волн.

    Именно в детекторных приёмниках впервые стал использоваться простейший полупроводниковый прибор, называемый вначале детектором и лишь позже получивший современное название – диод.

    Диод это прибор, состоящий всего из двух слоёв полупроводника. Это слой “p”- позитив и слой “n”- негатив. На границе двух слоёв полупроводника образуется “p-n” переход. Анодом является область “p”, а катодом зона “n”. Любой диод способен проводить ток только от анода к катоду. На принципиальных схемах он обозначается так.

    Как работает полупроводниковый диод.

    В полупроводнике “n” типа имеются свободные электроны, частицы со знаком минус, а в полупроводнике типа “p” наличествуют ионы с положительным зарядом, их принято называть «дырки». Подключим диод к источнику питания в обратном включении, то есть на анод подадим минус, а на катод плюс. Между зарядами разной полярности возникает притяжение и положительно заряженные ионы тянутся к минусу, а отрицательные электроны дрейфуют к плюсу источника питания. В “p-n” переходе нет носителей зарядов, и отсутствует движение электронов. Нет движения электронов – нет электрического тока. Диод закрыт.

    При прямом включении диода происходит обратный процесс. В результате отталкивания однополярных зарядов все носители группируются в зоне перехода между двумя полупроводниковыми структурами. Между частицами возникает электрическое поле перехода и рекомбинация электронов и дырок. Через “p-n” переход начинает протекать электрический ток. Сам процесс носит название «электронно-дырочная проводимость». При этом диод открыт.

    Возникает вполне естественный вопрос, как из одного полупроводникового материала удаётся получить структуры, обладающие различными свойствами, то есть полупроводник “n” типа и полупроводник “p” типа. Этого удаётся добиться с помощью электрохимического процесса называемого легированием, то есть внесением в полупроводник примесей других металлов, которые и обеспечивают нужный тип проводимости. В электронике используются в основном три полупроводника. Это германий (Ge), кремний (Si) и арсенид галлия (GaAs). Наибольшее распространение получил, конечно, кремний, так как запасы его в земной коре поистине огромны, поэтому стоимость полупроводниковых приборов на основе кремния весьма невысока.

    При добавлении в расплав кремния ничтожно малого количества мышьяка (As) мы получаем полупроводник “n” типа, а легируя кремний редкоземельным элементом индием (In), мы получаем полупроводник “p” типа. Присадок для легирования полупроводниковых материалов достаточно много. Например, внедрение атомов золота в структуру полупроводника увеличивает быстродействие диодов, транзисторов и интегральных схем, а добавление небольшого числа различных примесей в кристалл арсенида галлия определяет цвет свечения светодиода.

    Типы диодов и область их применения.

    Семейство полупроводниковых диодов очень большое. Внешне они очень похожи за исключением некоторых групп, которые отличаются конструктивно и по ряду параметров. Наиболее распространены следующие модификации полупроводниковых диодов:

    Выпрямительные диоды. Предназначены для выпрямления переменного тока.

    Стабилитроны. Обеспечивают стабилизацию выходного напряжения.

    Диоды Шоттки. Предназначены для работы в импульсных преобразователях и стабилизаторах напряжения. Например, в блоках питания персональных компьютеров.

    Импульсные диоды отличаются очень высоким быстродействием и малым временем восстановления. Они применяются в импульсных блоках питания и в другой импульсной технике. К этой группе можно отнести и туннельные диоды.

    СВЧ диоды имеют определённые конструктивные особенности и работают в устройствах на высоких и сверхвысоких частотах.

    Диоды Ганна. Они предназначены для генерирования частот до десятков гигагерц.

    Лавинно-пролётные диоды генерируют частоты до 180 ГГц.

    Фотодиоды имеют миниатюрную линзу и управляются световым излучением. В зависимости от типа могут работать как в инфракрасном, так и в ультрафиолетовом диапазоне спектра.

    Светодиоды. Излучают видимый свет практически любой длины волны. Спектр применения очень широк. Рассматриваются как альтернатива электрическим лампам накаливания и других осветительных приборов.

    Твёрдотельный лазер так же представляет собой полупроводниковый диод. Спектр применения очень широк. От приборов военного назначения до обычных лазерных указок, которые легко купить в магазине. Его можно обнаружить в лазерных считывателях CD/DVD-плееров, а также лазерных уровнях (нивелирах), используемых в строительстве. Чтобы не говорили сторонники лазерной техники, как ни крути, лазер опасен для зрения. Так что, будьте внимательны при обращении с ним.

    Также стоит отметить, что у каждого типа диодов есть и подгруппы. Так, например, среди выпрямительных есть и ультрабыстрые диоды. Могут называться как Ultra-Fast Rectifier, HyperFast Rectifier и т.п. Пример – ультрабыстрый диод с малым падением напряжения STTH6003TV/CW (аналог VS-60CPH03). Это узкоспециализированный диод, который применяется, например, в сварочных аппаратах инверторного типа. Диоды Шоттки являются быстродействующими, но не способны выдерживать больших обратных напряжений, поэтому вместо них применяются ультрабыстрые выпрямительные диоды, которые способны выдерживать большие обратные напряжения и огромные прямые токи. При этом их быстродействие сравнимо с быстродействием диодов Шоттки.

    Параметры полупроводниковых диодов.

    Параметров у полупроводниковых диодов достаточно много и они определяются функцией, которую те выполняют в конкретном устройстве. Например, в диодах, генерирующих СВЧ колебания, очень важным параметром является рабочая частота, а также та граничная частота, на которой происходит срыв генерации. А вот для выпрямительных диодов этот параметр совершенно не важен.

    В импульсных и переключающих диодах важна скорость переключения и время восстановления, то есть скорость полного открытия и полного закрытия. В мощных силовых диодах важна рассеиваемая мощность. Для этого их монтируют на специальные радиаторы. А вот диоды, работающие в слаботочных устройствах, ни в каких радиаторах не нуждаются.

    Но есть параметры, которые считаются важными для всех типов диодов, перечислим их:

    U пр. – допустимое напряжение на диоде при протекании через него тока в прямом направлении. Превышать это напряжение не стоит, так как это приведёт к его порче.

    U обр. – допустимое напряжение на диоде в закрытом состоянии. Его ещё называют напряжением пробоя. В закрытом состоянии, когда через p-n переход не протекает ток, на выводах образуется обратное напряжение. Если оно превысит допустимое значение, то это приведёт к физическому «пробою» p-n перехода. В результате диод превратиться в обычный проводник (сгорит).

    Очень чувствительны к превышению обратного напряжения диоды Шоттки, которые очень часто выходят из строя по этой причине. Обычные диоды, например, выпрямительные кремниевые более устойчивы к превышению обратного напряжения. При незначительном его превышении они переходят в режим обратимого пробоя. Если кристалл диода не успевает перегреться из-за чрезмерного выделения тепла, то изделие может работать ещё долгое время.

    I пр. – прямой ток диода. Это очень важный параметр, который стоит учитывать при замене диодов аналогами или при конструировании самодельных устройств. Величина прямого тока для разных модификаций может достигать величин десятков и сотен ампер. Особо мощные диоды устанавливают на радиатор для отвода тепла, который образуется из-за теплового действия тока. P-N переход в прямом включении также обладает небольшим сопротивлением. На небольших рабочих токах его действие не заметно, но вот при токах в единицы-десятки ампер кристалл диода ощутимо нагревается. Так, например, выпрямительный диодный мост в сварочном инверторном аппарате обязательно устанавливают на радиатор.

    I обр. – обратный ток диода. Обратный ток – это так называемый ток неосновных носителей. Он образуется, когда диод закрыт. Величина обратного тока очень мала и его в подавляющем числе случаев не учитывают.

    U стаб. – напряжение стабилизации (для стабилитронов). Подробнее об этом параметре читайте в статье про стабилитрон.

    Кроме того следует иметь в виду, что все эти параметры в технической литературе печатаются и со значком “max”. Здесь указывается предельно допустимое значение данного параметра. Поэтому подбирая тип диода для вашей конструкции необходимо рассчитывать именно на максимально допустимые величины.

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

    Adblock
    detector