Известно что все металлы обладают электрической проводимостью

Известно что все металлы обладают электрической проводимостью

Известно что все металлы обладают электрической проводимостью

Тест. Металлы, неметаллы и их соединения

Список вопросов теста

Вопрос 1

Отметь, какие утверждения о физических свойствах металлов являются верными:

Варианты ответов
  • большинство металлов можно вытягивать в проволоку
  • большинство металлов от удара рассыпается
  • все металлы обладают низкой электропроводностью
  • все металлы обладают высокой электропроводностью
  • для металлов характерна самая разнообразная окраска
Вопрос 2

Определи среди металлов, химические символы которых даны, щелочные и щелочноземельные.

Варианты ответов
  • щелочной металл
  • щелочноземельный металл
Вопрос 3

Какие из данных металлов не вытесняют водород из раствора соляной кислоты?

Варианты ответов
  • литий
  • цинк
  • кадмий
  • золото
  • ртуть
Вопрос 4

Какие из данных металлов не вытесняют олово из раствора его соли?

Варианты ответов
  • свинец
  • медь
  • золото
  • магний
  • железо
  • хром
Вопрос 5

Напиши уравнение химической реакций, протекающей при взаимодействии алюминия с раствором серной кислоты. Вычисли, чему равна сумма коэффициентов в уравнении реакции, и введи её в качестве ответа.

Вопрос 6

Ознакомься с уравнением химической реакции, которое отображает получение металла:

Определи, какой химический элемент в данной реакции является окислителем. Впиши знак этого элемента.

Вопрос 7

Определи агрегатное состояние оксида CO2 при нормальных условиях.

Варианты ответов
  • твердое
  • жидкое
  • газообразное
Вопрос 8

Какое из веществ, формулы которых приведены ниже, является оксидом?

Варианты ответов
  • NaOH
  • SiO2
  • HNO3
  • Н2О2
Вопрос 9

К какой группе относится данный оксид N2O3?

Варианты ответов
  • к кислотным
  • к основным
  • к амфотерным
Вопрос 10

В каком ряду степень окисления хлора не изменяется?

Варианты ответов
  • HCl, HClO, HClO2
  • HCl, NaCl, Cl2
  • Cl2, PCl5, HCl
  • Cl2O7, HClO4, KClO4
Вопрос 11

Оксид — жидкое вещество без цвета и запаха. Из ряда формул выбери ту, которая соответствует описанию данного оксида.

Варианты ответов
  • Fe2O3
  • SO3
  • Na2O
  • H2O
Вопрос 12

Какое из веществ, формулы которых приведены ниже, является основанием?

Варианты ответов
  • CO
  • Ba(OH)2
  • SiO2
  • H3PO4
Вопрос 13

Выбери ряд химических формул, обозначающих вещества, все из которых могут взаимодействовать со щелочами:

Варианты ответов
  • SiO2, PbS, HNO3
  • CuO, H2S, Fe2(SO4)3
  • P2O5, HF, CrSO4
  • SO3, Cr(OH)2, Al(NO3)3
Вопрос 14

Напиши уравнение химической реакции, протекающей при взаимодействии гидроксида калия с оксидом фосфора(V).

Вычисли, чему равна сумма коэффициентов в уравнении этой химической реакции, и введи её в качестве ответа.

Вопрос 15

Какие вещества следует выбрать, чтобы получить гидроксид марганца (II)?

Варианты ответов
  • гидроксид натрия и сульфат марганца (II)
  • марганец и воду
  • оксид марганца (II) и водород
Вопрос 16

Степень окисления фосфора равна +5 в соединении

Варианты ответов
  • P4O6
  • H4P2O7
  • H3PO3
  • PH3
Вопрос 17

Укажи двухосновные кислоты

Варианты ответов
  • H2SO4
  • K2CO3
  • Na2O
  • NaCl
  • HNO3
  • H3PO4
  • Н2СО3
Вопрос 18

Приведён ряд веществ: Cu, Ca, NaOH, MgO, K2CO3, H2SO4, CO2. Укажи количество возможных реакций с участием соляной кислоты НСl.

Варианты ответов
  • 2
  • 3
  • 4
  • 5
  • 6
Вопрос 19

Какое из веществ, формулы которых приведены ниже, является солью?

Варианты ответов
  • MnSO4
  • Pb(OH)2
  • HI
  • Cu2O
Вопрос 20

Как изменяется характер оксида элементов в ряду Mg – Al – Si ?

Известно что все металлы обладают электрической проводимостью

§ 8. Электрическая проводимость металлов

Наиболее полно и точно явление электрической проводимости металлов описывает квантовая теория твердых тел. Однако для выяснения наиболее общих вопросов можно ограничиться и рассмотрением на основе классической электронной теории. Согласно этой теории совокупность электронов в кристалле можно с известным приближением уподобить идеальному газу, считая движение электронов подчиняющимся законам классической механики. При этом взаимодействие электронов между собой не рассматривается вообще, а взаимодействие электронов с ионами кристаллической решетки сводится к обычным упругим столкновениям.

Металлы содержат огромное число свободных электронов, перемещающихся в межузельном пространстве кристалла. В 1 см 3 насчитывается около 10 23 атомов. Следовательно, при валентности металла Z концентрация n свободных электронов, называемых еще электронами проводимости, равна . Все они находятся в беспорядочном хаотическом тепловом движении, перемещаясь в пространстве кристалла с колоссальной скоростью, среднее значение которой около 10 8 см/с. В силу хаотичности теплового движения число электронов, двигающихся в каком-либо направлении, в среднем всегда равно числу электронов, двигающихся во встречном направлении, благодаря чему в отсутствие внешнего электрического поля заряд, переносимый электронами через любое сечение кристалла, равен нулю. Под действием электрического поля каждый электрон приобретает дополнительную скорость, благодаря чему весь коллектив электронов в металле начинает перемещаться в направлении, противоположном направлению напряженности приложенного поля. Появление направленного движения электронов и определяет возникновение в проводнике электрического тока.

На каждый электрон электрическое поле напряженностью Е действует с силой F = eE. Под действием этой силы электрон приобретает ускорение

где e — заряд электрона, а m — его масса.

Согласно законам классической механики в свободном пространстве скорость электронов возрастала бы неограниченно; то же наблюдалось бы при их движении в строго периодическом поле (например, в идеальном кристалле с покоящимися в узлах атомами).

В действительности же благодаря нарушениям периодичности в потенциальном поле решетки направленное перемещение электронов в кристалле оказывается совсем незначительным. Нарушения эти в первую очередь связаны с тепловыми колебаниями атомов (в случае металлов — атомных остатков) в узлах кристаллической решетки (при этом амплитуда колебаний тем больше, чем выше температура кристалла). Кроме того, в кристалле всегда имеются различные дефекты, обусловленные наличием атомов примесей, пустых мест в узлах, атомов в междоузлиях, дислокаций. Влияют также границы блоков кристаллов, трещины, полости и т. д.

В этих условиях электроны все время испытывают столкновения и растрачивают приобретенную в электрическом поле энергию. Поэтому в действительности скорость электронов под действием силы внешнего поля увеличивается только на участке между двумя столкновениями. Средняя длина этого участка называется длиной свободного пробега электрона и обозначается через λ.

Итак, ускоряясь на длине свободного пробега, электрон приобретает дополнительную скорость направленного движения

где τ — время свободного пробега, или среднее время между двумя последовательными соударениями электрона с дефектами. Зная длину свободного пробега λ, можно время свободного пробега τ вычислить по формуле

где υ — скорость хаотического теплового движения электрона. Длина свободного пробега электрона λ обычно очень мала и не превышает 10 -5 см. Поэтому малыми оказываются и время свободного пробега τ, и сама добавка скорости Δυ. Так как то

Принимая, что при столкновении с дефектом электрон практически полностью теряет скорость направленного движения, можно среднюю скорость направленного движения, называемую скоростью дрейфа, выразить так:

между средней скоростью дрейфа и напряженностью поля Е называется подвижностью электронов.

Название этой величины точно отражает ее физический смысл: подвижность — это скорость дрейфа, которую приобретают электроны в электрическом поле единичной напряженности. Более строгий расчет, учитывающий тот факт, что и при хаотическом тепловом движении электроны перемещаются не с постоянной скоростью υ, а имеют различные скорости, приводит к вдвое большему значению для подвижности электронов:

Соответственно и для скорости дрейфа более точным является выражение

Найдем теперь выражение для плотности тока в металлах. Так как под действием внешнего электрического поля электроны приобретают дополнительную скорость дрейфа то за единицу времени через любую площадку, перпендикулярную напряженности поля, пройдут все электроны, отстоящие от этой площадки на расстоянии, не превосходящем Через площадку площадью S за то же время пройдут все электроны, заключенные в объеме параллелепипеда длиной (рис. 15). Если концентрация свободных электронов в металле n, то число их в объеме этого параллелепипеда будет равно . Плотность тока, определяемая зарядом, перенесенным этими электронами через единичную площадь, выразится так:


Рис. 15

Отношение плотности тока к напряженности поля, вызвавшего появление этого тока, называется удельной электрической проводимостью (обозначается через σ). Очевидно, что

Величина ρ, обратная удельной электрической проводимости, называется удельным электрическим сопротивлением:

Обратим внимание на то, что возникновение электрического тока в проводнике четко связано с появлением дрейфа электронов. Скорость дрейфа оказывается очень небольшой — в реальных электрических полях ее значение обычно не превышает скорости пешехода. В то же время ток распространяется по проводам практически мгновенно и появляется во всех участках замкнутой цепи почти одновременно. Объясняется это колоссальной скоростью распространения самого электрического поля. При включении источника напряжения электрическое поле приходит в самые удаленные места рассматриваемой цепи со скоростью света и вызывает появление дрейфового перемещения сразу у всего коллектива электронов.

Электропроводность веществ

В этой статье раскроем тему электропроводности, вспомним о том, что такое электрический ток, как он связан с сопротивлением проводника и соответственно с его электропроводностью. Отметим основные формулы для вычисления данных величин, коснемся темы скорости тока и ее связи с напряженностью электрического поля. Также затронем связь электрического сопротивления и температуры.

Для начала вспомним о том, что же такое электрический ток. Если поместить вещество во внешнее электрическое поле, то под действием сил со стороны этого поля, в веществе начнется движение элементарных носителей заряда — ионов или электронов. Это и будет электрическим током. Сила тока I измеряется в амперах, и один ампер — это ток, при котором через поперечное сечение проводника протекает за секунду заряд, равный одному кулону.

Ток бывает постоянным, переменным, пульсирующим. Постоянный ток не меняет своей величины и направления в каждый конкретный момент времени, переменный ток с течением времени меняет свои величину и направление (генераторы переменного тока и трансформаторы дают именно переменный ток), пульсирующий ток меняет свою величину, но не меняет направления (например выпрямленный переменный ток является пульсирующим).

Вещества имеют свойство проводить электрический ток под действием электрического поля, и это свойство называется электропроводностью, которая у разных веществ различна. Электропроводность веществ зависит от концентрации в них свободных заряженных частиц, то есть ионов и электронов, не связанных ни с кристаллической структурой, ни с молекулами, ни с атомами данного вещества. Так, в зависимости от концентрации в веществе свободных носителей заряда, вещества по степени электропроводности подразделяются на: проводники, диэлектрики и полупроводники.

Наиболее высокой электропроводностью обладают проводники электрического тока, и по физической природе, проводники в природе представлены двумя родами: металлами и электролитами. В металлах ток обусловлен перемещением свободных электронов, то есть проводимость у них электронная, а в электролитах (в растворах кислот, солей, щелочей) — перемещением ионов — частей молекул, имеющих положительный и отрицательный заряд, то есть проводимость у электролитов ионная. Ионизированные пары и газы отличаются смешанной проводимостью, в них ток обусловлен движением и электронов и ионов.

Электронная теория отлично объясняет высокую электропроводность металлов. Связь валентных электронов с их ядрами в металлах слаба, потому эти электроны свободно перемещаются от атома к атому по объему проводника.

Получается, что свободные электроны в металлах заполняют пространство между атомами подобно газу, электронному газу, и находятся в хаотичном движении. Но при внесении металлического проводника в электрическое поле, свободные электроны станут двигаться упорядоченно, они переместятся по направлению к положительному полюсу, чем создадут ток. Таким образом, упорядоченное движение свободных электронов в металлическом проводнике называется электрическим током.

Известно, что скорость распространения электрического поля в пространстве примерно равна 300000000 м/с, то есть скорости света. Это та же скорость, с которой ток проходит по проводнику.

Что это значит? Это не значит, что каждый электрон в металле движется с такой огромной скоростью, электроны в проводнике напротив — имеют скорость от нескольких миллиметров в секунду до нескольких сантиметров в секунду, в зависимости от напряженности электрического поля, а вот скорость распространения электрического тока по проводнику как раз равна скорости света.

Все дело в том, что каждый свободный электрон оказывается в общем электронном потоке того самого «электронного газа», и во время прохождения тока, электрическое поле оказывает действие на весь этот поток, в итоге электроны непрерывно друг другу передают это действие поля — от соседа к соседу.

Но движутся электроны на своих местах очень медленно, несмотря на то, что скорость распространения электрической энергии по проводнику оказывается огромной. Так, когда на электростанции включают рубильник, ток мгновенно возникает во всей сети, а электроны при этом практически стоят на местах.

Однако, когда свободные электроны движутся по проводнику, они испытывают многочисленные столкновения на своем пути, они сталкиваются с атомами, ионами, молекулами, передавая им часть своей энергии. Энергия движущихся электронов, преодолевающих такое сопротивление, частично рассеивается в виде тепла, и проводник нагревается.

Эти столкновения служат сопротивлением движению электронов, потому свойство проводника препятствовать движению заряженных частиц и называют электрическим сопротивлением. При малом сопротивлении проводника проводник нагревается током слабо, при значительном — намного сильнее, и даже до бела, этот эффект применяется в нагревательных приборах и в лампах накаливания.

Единица изменения сопротивления — Ом. Сопротивление R = 1 Ом — это сопротивление такого проводника, при прохождении по которому постоянного тока в 1 ампер, разность потенциалов на концах проводника равна 1 вольту. Эталон сопротивления в 1 Ом — столб ртути высотой 1063 мм, сечением 1 кв.мм при температуре 0°С.

Поскольку проводникам характерно электрическое сопротивление, то можно сказать, что в какой-то степени проводник способен проводить электрический ток. В связи с этим введена величина, называемая проводимостью или электропроводностью. Электропроводность — это способность проводника проводить электрический ток, то есть величина, обратная электрическому сопротивлению.

Единица измерения электропроводности G (проводимости) — Сименс (См), и 1 См = 1/(1 Ом). G = 1/R.

Так как атомы различных веществ в разной степени препятствуют прохождению электрического тока, то и электрическое сопротивление у различных веществ разное. По этой причине введено понятие удельное электрическое сопротивление, величина которого «р» характеризует проводящие свойства того или иного вещества.

Удельное электрическое сопротивление измеряется в Ом*м, то есть сопротивление куба вещества с ребром в 1 метр. Таким же образом электропроводность вещества характеризуется удельной электропроводностью ?, измеряемой в См/м, то есть проводимость куба вещества с ребром в 1 метр.

Сегодня проводящие материалы в электротехнике используют в основном в виде лент, шин, проволок, с определенной площадью поперечного сечения и определенной длины, но не в виде метровых кубов. И для более удобных расчетов электрического сопротивления и электропроводности проводников конкретных размеров были введены более приемлемые единицы измерения как для удельного электрического сопротивления, так и для удельной электропроводности. Ом*мм2/м — для удельного сопротивления, и См*м/мм2 — для удельной электропроводности.

Теперь можно говорить, что удельное электрическое сопротивление и удельная электропроводность характеризуют проводящие свойства проводника площадью поперечного сечения в 1 кв.мм, длиной в 1 метр при температуре 20°C, это более удобно.

Лучшей электропроводностью обладают такие металлы как: золото, медь, серебро, хром, алюминий. Сталь и железо проводят ток хуже. Чистые металлы всегда обладают лучшей электропроводностью, чем их сплавы, поэтому чистая медь в электротехнике предпочтительней. Если нужно специально высокое сопротивление, то используют вольфрам, нихром, константан.

Зная величину удельного электрического сопротивления или удельной электропроводности, можно легко вычислить сопротивление или электропроводность конкретного проводника, изготовленного из данного материала, приняв в расчет длину l и площадь поперечного сечения S этого проводника.

Электропроводность и электрическое сопротивление всех материалов зависит от температуры , поскольку частота и амплитуда тепловых колебаний атомов кристаллической решетки с ростом температуры так же возрастает, соответственно возрастает и сопротивление электрическому току, потоку электронов.

При понижении температуры — наоборот, колебания атомов кристаллической решетки становятся меньше, сопротивление уменьшается (возрастает электропроводность). У одних веществ зависимость сопротивления от температуры выражена слабее, у других — сильнее. Например такие сплавы как константан, фехраль и манганин слабо меняют удельное сопротивление в определенном интервале температур, поэтому из них делают термостабильные резисторы.

Температурный коэффициент сопротивления ? позволяет вычислить для конкретного материала приращение его сопротивления при определенной температуре, и численно характеризует относительное приращение сопротивления при увеличении температуры на 1 °С.

Зная температурный коэффициент сопротивления и приращение температуры, можно легко вычислить удельное сопротивление вещества при заданной температуре.

Почему металлы обладают высокой электрической проводимостью – Electrik-Ufa.ru

Свободные электроны

Металлы в твёрдом состоянии имеют кристаллическую структуру: расположение атомов в пространстве характеризуется периодической повторяемостью и образует геометрически правильный рисунок, называемый кристаллической решёткой.

Атомы металлов имеют небольшое число валентных электронов, расположенных на внешней электронной оболочке. Эти валентные электроны слабо связаны с ядром, и атом легко может их потерять.

Когда атомы металла занимают места в кристаллической решётке, валентные электроны покидают свои оболочки — они становятся свободными и отправляются «гулять» по всему кристаллу (а именно, свободные электроны перемещаются по внешним орбиталям соседних атомов. Эти орбитали перекрываются друг с другом вследствие близкого расположения атомов в кристаллической решётке, так что свободные электроны оказываются «общей собственностью» всего кристалла). В узлах кристаллической решётки металла остаются положительные ионы, пространство между которыми заполнено «газом» свободных электронов (рис. 1 ).

Рис. 1. Свободные электроны

Свободные электроны и впрямь ведут себя подобно частицам газа (другой адекватный образ — электронное море, которое «омывает» кристаллическую решётку) — совершая тепловое движение, они хаотически снуют туда-сюда между ионами кристаллической решётки. Суммарный заряд свободных электронов равен по модулю и противоположен по знаку общему заряду положительных ионов, поэтому металлический проводник в целом оказывается электрически нейтральным.

Газ свободных электронов является «клеем», на котором держится вся кристаллическая структура проводника. Ведь положительные ионы отталкиваются друг от друга, так что кристаллическая решётка, распираемая изнутри мощными кулоновскими силами, могла бы разлететься в разные стороны. Однако в тоже самое время ионы металла притягиваются к обволакивающему их электронному газу и, как ни в чём не бывало, остаются на своих местах, совершая лишь тепловые колебания в узлах кристаллической решётки вблизи положений равновесия.

Что произойдёт, если металлический проводник включить в замкнутую цепь, содержащую источник тока? Свободные электроны продолжают совершать хаотическое тепловое движение, но теперь — под действием возникшего внешнего электрического поля — они вдобавок начнут перемещаться упорядоченно. Это направленное течение электронного газа, накладывающееся на тепловое движение электронов, и есть электрический ток в металле (поэтому свободные электроны называются также электронами проводимости). Скорость упорядоченного движения электронов в металлическом проводнике, как нам уже известно, составляет приблизительно 0,1мм/с.

Опыт Рикке

Почему мы решили, что ток в металлах создаётся движением именно свободных электронов? Положительные ионы кристаллической решётки также испытывают на себе действие внешнего электрического поля. Может, они тоже перемещаются внутри металлического проводника и участвуют в создании тока?

Упорядоченное движение ионов означало бы постепенный перенос вещества вдоль направления электрического тока. Поэтому надо просто пропускать ток по проводнику на протяжении весьма длительного времени и посмотреть, что в итоге получится. Такого рода эксперимент и был поставлен Э.Рикке в 1901 году.

В электрическую цепь были включены три прижатых друг к другу цилиндра: два медных по краям и один алюминиевый между ними (рис. 2 ). По этой цепи пропускался электрический ток в течение года.

Рис. 2. Опыт Рикке

За год сквозь цилиндры прошёл заряд более трёх миллионов кулон. Предположим, что каждый атом металла теряет по одному валентному электрону, так что заряд иона равен элементарному заряду Кл. Если ток создаётся движением положительных ионов, то нетрудно подсчитать (сделайте это сами!), что такая величина прошедшего по цепи заряда соответствует переносу вдоль цепи около 2кг меди.

Однако после разъединения цилиндров было обнаружено лишь незначительное проникновение металлов друг в друга, обусловленное естественной диффузией их атомов (и не более того). Электрический ток в металлах не сопровождается переносом вещества, поэтому положительные ионы металла не принимают участия в создании тока.

Физический смысл проводимости

Использование металлических проводников имеет давнишнюю историю. Ученые и инженеры, работающие в областях науки и техники, использующих электроэнергию, давно определились с материалами для проводов, клемм, контактов, печатных плат и т. д. Определить самый электропроводный металл в мире помогает физическая величина, называемая электрической проводимостью.

Понятие проводимости обратно электрическому сопротивлению. Количественное выражение проводимости связано с единицей сопротивления, которое в международной системе единиц (СИ) измеряется в Омах. Единица электрической проводимости в системе СИ – сименс. Русское обозначение этой единицы – См, интернациональное – S. Электрической проводимостью в 1 См обладает участок электрической сети с сопротивлением в 1 Ом.

Удельная проводимость

Мера способности вещества проводить электроток называется удельной электропроводностью. Самым высоким подобным показателем обладает самый электропроводный металл. Эта характеристика может быть определена для любого вещества или среды инструментально и имеет числовое выражение. Удельная электропроводность цилиндрического проводника единичной длины и единичной площади сечения связана с удельным сопротивлением данного проводника.

Системной единицей удельной проводимости является сименс на метр – См/м. Чтобы выяснить, какой из металлов самый электропроводный металл в мире, достаточно сравнить их удельную проводимость, определенную экспериментально. Можно определить удельное сопротивление при помощи специального прибора – микроомметра. Эти характеристики являются обратнозависимыми.

Читайте также  Индукционная варочная плита электролюкс

Зависимость сопротивления от температуры

Опыт показывает, что при нагревании металлического проводника его сопротивление увеличивается. Как это объяснить?

Причина проста: с повышением температуры тепловые колебания ионов кристаллической решётки становятся более интенсивными, так что число соударений свободных электронов с ионами возрастает. Чем активнее тепловое движение решётки, тем труднее электронам пробираться сквозь промежутки между ионами (Представьте себе вращающуюся проходную дверь. В каком случае труднее проскочить через неё: когда она вращается медленно или быстро? :-)). Скорость упорядоченного движения электронов уменьшается, поэтому уменьшается и сила тока (при неизменном напряжении). Это и означает увеличение сопротивления.

Как опять-таки показывает опыт, зависимость сопротивления металлического проводника от температуры с хорошей точностью является линейной:

Здесь — сопротивление проводника при . График зависимости (1) является прямой линией (рис. 4 ).

Множитель называется температурным коэффициентом сопротивления. Его значения для различных металлов и сплавов можно найти в таблицах.

Длина проводника и его площадь поперечного сечения при изменении температуры меняются несущественно. Выразим и через удельное сопротивление:

и подставим эти формулы в (1) . Получим аналогичную зависимость удельного сопротивления от температуры:

Коэффициент весьма мал (для меди, например, ), так что температурной зависимостью сопротивления металла часто можно пренебречь. Однако в ряде случаев считаться с ней приходиться. Например, вольфрамовая спираль электрической лампочки раскаляется до такой степени, что её вольт-амперная характеристика оказывается существенно нелинейной.

Рис. 5. Вольт-амперная характеристика лампочки

Так, на рис. 5 приведена вольт-амперная характеристика автомобильной лампочки. Если бы лампочка представляла собой идеальный резистор, её вольт-амперная характеристика была прямой линией в соответствии с законом Ома. Эта прямая изображена синим пунктиром.

Однако по мере роста напряжения, приложенного к лампочке, график отклоняется от этой прямой всё сильнее и сильнее. Почему? Дело в том, что с увеличением напряжения ток через лампочку возрастает и больше разогревает спираль; сопротивление спирали поэтому также увеличивается. Следовательно, сила тока хотя и продолжит возрастать, но будет иметь всё меньшее и меньшее значение по сравнению с тем, которое предписывается «пунктирной» линейной зависимостью тока от напряжения.

Ход урока.

I. Организационный момент

II. Изучение новой темы

  1. На каких 2 группы можно разделить все известные вам вещества?
  2. На каких 2 группы можно разделить простые вещества?
  3. В чём особенность строения атомов металлов?
  4. Какие типы связи вам известны?
  5. В чём особенность металлической связи?

Учитель. Действительно особенностью металлов является наличие общих электронов, иногда их называют электронным газом. Из жизненного опыта вы знаете о том, что металлы обладают общими свойствами. Сегодня мы подробнее познакомимся с некоторыми свойствами металлов.

Учитель называет тему урока, ученики записывают её в тетрадь, называет цель урока.

Учитель. В глубокой древности человечеству было известно 7 металлов, считалось, что на Земле они появились под действием семи планет:

Ребята приготовили для нас небольшие сообщения об этих металлах

(Выступление детей с рассказами о металлах)

Учитель. Мы прослушали выступление ребят об известных в древности металлах, а сейчас откройте периодическую таблицу и посмотрите, много ли металлов сейчас известно человечеству? Действительно металлов известно гораздо больше чем неметаллов, всего насчитывается 88 металлов и всех их объединяют сходные свойства

Какие же это свойства?

Ученики называют свойства (пластичность, твёрдость, металлический блеск, электропроводность, теплопроводность, плотность, температура плавления)

Учитель. Используя выданный вам материал, а так же учебник страница 69-72

ДОМОСТРОЙСантехника и строительство

  • Главная
  • Связаться с нами
  • Четверг, 12 декабря 2019 1:07
  • Автор: Sereg985
  • Прокоментировать
  • Рубрика: Строительство
  • Ссылка на пост
  • https://firmmy.ru/

Ценность металлов напрямую определяется их химическими и физическими свойствами. В случае с таким показателем, как электропроводимость, эта связь не так прямолинейна. Самый электропроводный металл, если измерять данный показатель при комнатной температуре (+20 °C), — серебро.

Физический смысл проводимости

Использование металлических проводников имеет давнишнюю историю. Ученые и инженеры, работающие в областях науки и техники, использующих электроэнергию, давно определились с материалами для проводов, клемм, контактов, печатных плат и т. д. Определить самый электропроводный металл в мире помогает физическая величина, называемая электрической проводимостью.

Понятие проводимости обратно электрическому сопротивлению. Количественное выражение проводимости связано с единицей сопротивления, которое в международной системе единиц (СИ) измеряется в Омах. Единица электрической проводимости в системе СИ – сименс. Русское обозначение этой единицы – См, интернациональное – S. Электрической проводимостью в 1 См обладает участок электрической сети с сопротивлением в 1 Ом.

Удельная проводимость

Мера способности вещества проводить электроток называется удельной электропроводностью. Самым высоким подобным показателем обладает самый электропроводный металл. Эта характеристика может быть определена для любого вещества или среды инструментально и имеет числовое выражение. Удельная электропроводность цилиндрического проводника единичной длины и единичной площади сечения связана с удельным сопротивлением данного проводника.

Системной единицей удельной проводимости является сименс на метр – См/м. Чтобы выяснить, какой из металлов самый электропроводный металл в мире, достаточно сравнить их удельную проводимость, определенную экспериментально. Можно определить удельное сопротивление при помощи специального прибора – микроомметра. Эти характеристики являются обратнозависимыми.

Проводимость металлов

Само понятие электрического тока как направленного потока заряженных частиц кажется более гармоничным для веществ, основанных на кристаллических решетках свойственных металлам. Носителями зарядов при возникновении электрического тока в металлах являются свободные электроны, а не ионы, как это бывает в жидких средах. Экспериментально установлено, что при возникновении тока в металлах не происходит переноса частиц вещества между проводниками.

Металлические вещества отличаются от других более свободными связями на атомарном уровне. Внутреннее устройство металлов отличается присутствием большого числа «одиноких» электронов. которые при малейшем воздействии электромагнитных сил образуют направленный поток. Поэтому не зря именно металлы являются лучшими проводниками электрического тока, и именно такие молекулярные взаимодействия отличают самый электропроводный металл. На особенностях структуры кристаллической решетки металлов основано еще одно их специфическое свойство — высокая теплопроводность.

Топ лучших проводников — металлов

4 металла, имеющие практическое значение для их применения в качестве электропроводников распределяются в следующем порядке относительно величины удельной проводимости, измеряемой в См/м:

  1. Серебро — 62 500 000.
  2. Медь – 59 500 000.
  3. Золото – 45 500 000.
  4. Алюминий — 38 000 000.

Видно, что самый электропроводный металл – серебро. Но подобно золоту, оно используется для организации электрической сети лишь в особых специфических случаях. Причина – высокая стоимость.

Зато медь и алюминий – самый распространенный вариант для электроприборов и кабельной продукции благодаря низкому сопротивлению электрическому току и ценовой доступности. Другие металлы применяются в качестве проводников редко.

Факторы, влияющие на проводимость металлов

Даже самый электропроводный металл снижает свою проводимость, если в нём присутствуют другие добавки и примеси. У сплавов иная, чем у «чистых» металлов, структура кристаллической решетки. Она отличается нарушением в симметрии, трещинами и другими дефектами. Снижается проводимость и при повышении температуры окружающей среды.

Повышенное сопротивление, присущее сплавам, находит применение в нагревательных элементах. Неслучайно для изготовления рабочих элементов электропечей, обогревателей применяют нихром, фехраль и другие сплавы.

Самый электропроводный металл — это драгоценное серебро, больше используемое ювелирами, для чеканки монет и т. д. Но и в технике и приборостроении его особые химические и физические свойства находят широкое применение. Например, кроме использования в узлах и агрегатах с пониженным сопротивлением, серебряное напыление предохраняет контактные группы от окисления. Уникальные свойства серебра и сплавов на его основе часто делают его применение оправданным, несмотря на высокую стоимость.

Высокая электропроводность — металл

К металлам относятся вещества, обладающие хорошей электрической проводимостью с удельным сопротивлением р 10 — 7 — — 10 — 8 ом-м, высокой теплопроводностью, вязкостью, ковкостью. Высокая электропроводность металлов объясняется тем, что валентные электроны принадлежат не отдельным атомам, а всей кристаллической решетке в целом. Эти электроны называют свободными. [31]

Приведенные положения позволяют объяснить характерные свойства металлов. Высокая электропроводность металлов объясняется присутствием в них свободных электронов, которые под влиянием даже небольшой разности потенциалов перемещаются от отрицательного полюса к положительному. С повышением температуры усиливаются колебания ионов ( атомов), что затрудняет прямолинейное движение электронов, в результате чего электросопротивление возрастает. При низких температурах колебательное движение ионов ( атомов) сильно уменьшается и электропроводность резко возрастает. Около абсолютного нуля сопротивление многих металлов практически отсутствует. Высокая теплопроводность металлов обусловливается как большой подвижностью свободных электронов, так и колебательным движением ионов ( атомов), вследствие чего происходит быстрое выравнивание температуры в массе металла. [32]

Приведенные положения позволяют объяснить характерные свойства металлов. Высокая электропроводность металлов объясняется присутствием в них свободных электронов, которые перемещаются в потенциальном поле решетки. С повышением темпера гуры усиливаются колебания ионов ( атомов), образуются вакансии и нарушается правильная периодичность потенциального поля, что затрудняет движение электронов, в результате чего электросопротивление возрастает. При низких температурах колебательное движение ионов ( атомов) сильно уменьшается и электропроводность возрастает. У некоторых металлов в результате образования пар электронов, движущихся упорядоченно при очень низких температурах ( 20К), электропроводность обращается в бесконечное и, — явление сверхпроводимости. Высокая теплопроводность металлов обусловливается большой подвижностью свободных электронов и в меньшей степени колебательным движением ионов. [33]

В отличие от ионных и ковалентных соединений металлы отличаются высокой электропроводностью и теплопроводностью. Высокая электропроводность металлов указывает на то, что электроны свободно могут передвигаться во всем его объеме. Иными словами металл можно рассматривать как кристалл, в узлах решетки которого расположены ионы, связанные электронами, находящимися в общем пользовании, т.е. в металлах имеет место сильно нелокализованная химическая связь. Совокупность электронов, обеспечивающих эту связь, называют электронным газом. [34]

Все металлы обладают высокой электропроводностью. Причина высокой электропроводности металлов заключается в слабой связи электронного газа с положительно заряженными ионами. Достаточно приложить небольшую разность электрических потенциалов к концам металлического тела, чтобы вызвать перемещение электронного газа — электрический ток. [36]

Положительно заряженные атомы валентная связи), окружены как бы электронным газом, который может свободно передвигаться. Этим объясняется высокая электропроводность металлов . [37]

Свободные электроны перемещаются по объему металла, как бы не замечая ионов, находящихся в узлах кристаллической решетки. Этим и объясняется высокая электропроводность металлов . [38]

За счет обобществления электронов атомы становятся положительно заряженными ионами, которые обтекаются электронным газом, что и обусловливает связи между атомами ( ионами) в кристаллической решетке. Наличие электронного газа объясняет, в частности, высокую электропроводность металлов . [39]

Металлическая связь возникает при образовании из внешних ( относительно слабо связанных с ядром) электронов отрицательно заряженного электронного газа, в результате чего положительно заряженные ионы создают плотную, но пластичную кристаллическую решетку. Электроны, свободно перемещаясь между атомами, обеспечивают высокую электропроводность металлов . [40]

Металлическая связь осуществляется путем образования из внешних, относительно слабо связанных с ядром электронов отрицательно заряженного электронного газа, организующего положительно заряженные ионы в — плотную, но довольна пластичную кристаллическую решетку. Электроны легко перемещаются от атома к атому, обусловливая высокую электропроводность металла . Большинство металлов имеет одну из трех кристаллических решеток: гексагональную плотноупакованную, гранецентрированную кубическую или объ-емноцентрированную кубическую. Прочность металлической связи увеличивается с повышением концентрации электронного газа. [41]

Наличие свободных электронов во всех металлических структурах обусловливает существование некоторых общих свойств металлов. Так, со свободой перемещения электронов связаны хорошая теплопроводность и высокая электропроводность металлов . [42]

Таким образом, в металлах имеются положительно заряженные ионы, электроны и небольшое количество нейтральных атомов. Этот особый тип химической связи и обусловливает наличие определенных физических свойств. Высокая электропроводность металлов объясняется наличием свободных электронов. В электрическом поле беспорядочное движение электронов становится направленным: они перемещаются от отрицательного полюса к положительному. [43]

У металлов над полностью заполненными энергетическими зонами расположена зона, заполненная электронами частично. У Na частично заполненная зона образуется в результате расщепления наполовину заполненного уровня 3s, а в Mg — в результате расщепления заполненного уровня 3s и пустого уровня Зр. Высокая электропроводность металлов объясняется наличием частично заполненной зоны. Носителями тока являются здесь электроны в этой зоне, поскольку в ней имеется много свободных энергетических состояний. [44]

Металлическая связь характеризуется взаимодействием положительных ионов кристаллической решетки металла и свободных электронов, не связанных с определенными ионами и свободно перемещающихся в пределах кристаллической решетки. Электроны не связаны с определенными ионами и свободно перемещаются в металле. Этим определяется высокая электропроводность металлов . Неметаллы, такие, как кислород, сера, галогены, принимающие электроны от металла, являются окислителями. Легкость отдачи электронов их атомами определяет химическую активность металлов. По химической активности металлы различаются между собой. [45]

Какие физические свойства обусловлены общим для всех металлов типом кристаллической решётки? Назовите области применения металлов, основанные на указанных вами физических свойствах.

Электропроводность. Серебро и золото обладают самой хорошей электропроводностью, они применяются в производстве электроники. Медь и алюминий применяются для проводов ЛЭП.

Теплопроводность. Медь и алюминий обладают самой хорошей теплопроводностью, их используются для производства радиаторов и теплообменников.

Металлический блеск. Хром применяют для производства зеркал и декоративных покрытий.

Пластичность. Самый пластичный металл золото, его применяют в ювелирном деле, для декоративных покрытий (сусальное золото). Из железа изготавливают листы, трубы, вытягивают проволоку и т. д.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector