Изготовление трансформатора для импульсного блока питания

Изготовление трансформатора для импульсного блока питания

Изготовление трансформатора для импульсного блока питания

Расчёт и изготовление трансформатора для импульсного блока питания
на тороидальном (кольцевом) ферритовом сердечнике. Онлайн калькулятор обмоток.

«Как-то лет в 12 нашёл я старый трансформатор, слегка перемотал его и включил.
Энергосистема опознала нового радиотехника и приветливо моргнула всем домом.
Вот так я и начал изучать силовую электронику».

А тем временем традиционные линейные источники питания на силовых трансформаторах всё чаще стали вытесняться своими импульсными коллегами.
При этом, что бы там не говорили авторитетные товарищи про многочисленные технические достоинства импульсных преобразователей, плюс у них только один — массогабаритные показатели. Всё остальное — сплошной минус.
Однако этот единственный плюс оказался настолько жирным, что заслонил собой все многочисленные минусы, особенно в тех замесах, когда к электроустройствам не предъявляется каких-либо жёстких требований.

Наиболее популярными среди радиолюбителей стали сетевые источники питания, собранные на микросхемах IR2153 и IR2155, которые представляют из себя самотактируемые высоковольтные драйверы, позволяющие получать полумостовые импульсные блоки питания мощностью до 1,5 кВт с минимальной обвязкой.
И если сердце импульсного блока питания колотится внутри готовой буржуйской микросхемы, то главным, ответственным за электрохозяйство среди остальных наружных образований, безусловно, является правильно выполненный трансформатор.

Для наших высокотоковых дел лучше всего применять трансформаторы с тороидальным магнитопроводом. В сравнении с другими сердечниками они имеют меньший вес и габариты, а также отличаются лучшими условиями охлаждения обмоток и повышенным КПД.
Но самое главное — при равномерном распределении обмоток по периметру сердечника практически отсутствует магнитное поле рассеяния, что в большинстве случаев отметает потребность в тщательном экранировании трансформаторов.

По сути дела, умных статей в сети на предмет расчёта импульсных трансформаторов великое множество, с картинками, формулами, таблицами и прочими авторитетными причиндалами. Наблюдаются в свободном доступе и многочисленные онлайн-калькуляторы на интересующую нас тематику.

И снизошла б на нас благодать неземная, кабы вся полученная информация сложилась в наших любознательных головах в единое большое целое.
Да вот, что-то не получается. Ништяк обламывается из-за того, что следуя этими различным компетентным источникам, мы устойчиво получаем на выходе и различные результаты.

Вот и гуляют по сети идентичные радиолюбительские схемы импульсных блоков питания на IR2153 с идентичными заявленными характеристиками, трансформаторами на одних и тех же кольцах, но радикально не идентичным количеством витков первичных обмоток трансформаторов.
А когда эти различия выражаются многими разами, то возникает желание «что-то подправить в консерватории». Объясняется это желание просто — существенной зависимостью КПД устройства от значения индуктивности, на которую нагружены ключевые транзисторы преобразователя. А в качестве этой индуктивности как раз и выступает первичная обмотка импульсного трансформатора.

А для лучшего восприятия сказанного, приведу типовую схему источника питания на IR2153, не обременённую ни устройством защиты, ни какими-либо другими излишествами.


Рис.1

Схема проверена временем и многочисленными опытами изрядно пощипанных током, неустрашимых радиолюбителей, так что не работать в ней — просто нечему.

Ну и наконец, переходим к расчёту импульсного трансформатора.

Мотать его будем на бюджетных низкочастотных ферритовых кольцах отечественного производителя 2000НМ или импортных — EPCOS N87, а для начала определимся с габаритной мощностью тороидального ферритового магнитопровода.

Концепция выбора габаритной мощности с запасом в 10% от максимальной мощности в нагрузке, заложенная в режимы автоматического подбора сердечника в большинстве калькуляторов, хотя и не противоречит теоретическим расчётам, учитывающим высокий КПД импульсного трансформатора, но всё же наводит на грустную мысль о ненадлежащей надёжности и возможной скорой кончине полученного моточного изделия.
Куда мне ближе трактовка этого параметра, описанная в литературе: Pгаб>1,25×Рн .

Расчёты поведём исходя из частоты работы преобразователя IR2153, равной 50 кГц. Почему именно такой?
Не ниже, потому что такой выбор частоты позволяет нам уложиться в достаточно компактные размеры ферритового сердечника, и при этом гарантирует полное отсутствие сигналов комбинационных частот ниже 30 кГц при работе девайса в составе качественной звуковоспроизводящей аппаратуры.
А не выше, потому что мы пилоты. А феррит у нас низкочастотный и может почахнуть и ответить значительным снижением магнитной проницаемости при частотах свыше 60-70 кГц. Не забываем, что сигнал, на выходах ключей имеет форму меандра и совокупная амплитуда гармоник, с частотами в 3-9 раз превышающими основную, имеет весьма ощутимую величину.

Параметры первичной обмотки трансформатора рассчитаем при помощи программы Lite-CalcIT, позволяющей, на мой взгляд, вполне адекватно оценить как размер сердечника, так и количество витков первичной обмотки.
Результаты сведём в таблицу.

Намотка трансформатора для импульсного источника питания

В процессе изготовления блока питания наткнулся на практически полное отсутствие информации о том как наматывать импульсный трансформатор: по часовой или против часовой стрелки, обмотки должны быть намотаны в одну сторону или в разные? В этой статье привожу свои умозаключения по этому поводу. Надеюсь представленная здесь информация будет полезна.

Так как это мой персональный блог, то позволю себе сделать лирическое отступление и рассказать о своих страданиях в данной области, несмотря на то, что один мой коллега как-то заметил: «Никого не интересует как ты сделал это. Главное — результат!».

Захотел я как-то собрать импульсный блок питания. Схему взял с радиокота. За схему автору спасибо!

Мотивировался простотой и подробностью описания схемы — вплоть до изображения намотки трансформатора. Однако как показала практика, и этого оказалось недостаточно…

К моему большому сожалению с первого раза схема не заработала должным образом — напряжение на выходе скакало от 3 до 5 вольт. После непродолжительных мучений взорвалась управляющая микросхема. Причем взорвалась буквально, отлетел кусок пластикового корпуса и были видны её «мозги». Эта неудача меня не огорчила, а наоборот прибавила решительности довести дело до ума. Купив новую микросхему и намотав, на всякий случай, новый трансформатор, я повторил эксперимент. В результате на выходе напряжение отсутствовало вовсе. После перепроверки схемы я обнаружил, что не правильно впаял оптопару. Заменив на всякий случай оптопару и впаяв её правильно я подал сетевое напряжение на вход… и снова пиротехнический эффект. Микросхема снова показала свои внутренности. От досады я сгреб все в ящик стола на несколько дней. Но идея сделать этот блок питания не покинула меня.

После длительных размышлений над смыслом бытия и о том в чем могла быть ошибка я пришел к выводу — что-то не так с трансформатором. Было решено избавиться от цепи BIAS (обозначена красным на схеме), чтобы еще упростить схему, а также понять как все-таки нужно наматывать трансформатор. В результате появились такие картинки (см. ниже).

Начнем с рассмотрения первичной обмотки трансформатора.

Для упрощения рассмотрим один виток первичной обмотки. Точкой обозначено начало обмотки. Обмотку мы наматываем против часовой стрелки (можно и по часовой стрелке, никто не запрещает, но в этом случае, как мы увидим далее, вторичную тоже нужно будет мотать по часовой стрелке). На схеме блока питания более положительный потенциал подключен к концу первичной обмотки (на рисунке обозначен как «+»), а более отрицательный потенциал к началу обмотки («-» на схеме). Из курса средней или высшей школы (в моем случае высшей, т.к. физику я начал учить только в институте) мы помним, что движущиеся электрические заряды создают магнитное поле, причем направление линий индукции магнитного поля определяется правилом буравчика. Эти линии на рисунке изображены элипсами со стрелочками. Суммарное магнитное поле проходит как бы от наблюдателя, через плоскость монитора и выходит с обратной стороны. В школе нас учили обозначать вектор крестиком (Х), если мы смотрим на него сзади и точкой, если смотрим на него спереди. Таким образом обозначен суммарный вектор магнитной индукции В в центре одиночного витка.

С первичной обмоткой разобрались. А теперь, товарищи, взгляните на вторичную обмотку. Согласно правилу Ленца, в замкнутом контуре, помещенном во внешнее магнитное поле (в данном случае созданном первичной обмоткой) возникает ток, направление которого стремиться ослабить внешнее поле. Точнее внешнее поле ослабляет не сам ток, а магнитное поле, которое он создает. Это поле вторичной обмотки обозначено на рисунке маленькими элипсами. Как видно, его направление противоположно магнитному полю первичной обмотки. Это поле, согласно школьным правилам отмечено жирной точкой в центре витка. Для упрощения рисунка часть силовых линий магнитного поля В была удалена. А теперь вопрос: каким должно быть направление тока во вторичной оботке, чтобы создать магнитное поле такого направления. Правильно, ток должен идти от начала вторичной обмотке к ее концу, т.е. на начале обмотки у нас более положительный потенциал (+), а на конце — минус. Теперь смотрим на схему блока питания. Действительно, «плюс» выходного напряжения начинается с начала вторичной обмотки, а «минус» — с конца.

Желающие могут потренироваться в рисовании силовых линий магнитного поля. Лично я ими исписал несколько тетрадных листов:)

Из всего выше сказанного следует, что обе обмотки трансформатора следует мотать против часовой стрелки. Собственно автор схемы это и изобразил на рисунке. После подробного анализа мне стало ясно почему это так, а не иначе.

Ну и в качестве завершения истории… Разобравшись с этой кухней я заново спаял схему. На этот раз навесным монтажем и без цепи BIAS. Какова же была моя радость когда я у видел на дисплее мультиметра заветные 5.44В :) Думаю многим из нас знакомо это чувство.

Рассуждения представленные здесь ни в коем случае не претендуют на то чтобы быть единственно правильными. Возможно в чем-то они упрощены, но мне они показались весьма логичными, т.к. направление токов и магнитных полей полностью согласуются. А в качестве вознаграждения за проделанный труд я получил работоспособную схему. В будущем планирую повторить опыт с несколькими вторичными обмотками трансформатора. Всем спасибо за внимание!

Расчет и намотка импульсного трансформатора

Сегодня я расскажу о процедуре расчета и намотки импульсного трансформатора, для блока питания на ir2153.

Моя задача стоит в следующем, нужен трансформатор c двумя вторичными обмотками, каждая из которых должна иметь отвод от середины. Значение напряжения на вторичных обмотках должно составить +-50В. Ток протекать будет 3А, что составит 300Вт.

Расчет импульсного трансформатора.

Для начала загружаем себе программу расчета импульсного трансформатора Lite-CalcIT и запускаем её.

Выбираем схему преобразования – полумостовая. Зависит от вашей схемы импульсного источника питания. В статье “Импульсный блок питания для усилителя НЧ на ir2153 мощностью 300Вт” схема преобразования –полумостовая.

Напряжение питания указываем постоянное. Минимальное = 266 Вольт, номинальное = 295 Вольт, максимальное = 325 Вольт.

Тип контроллера указываем ir2153, частоту генерации 50кГц.

Стабилизации выходов – нет.Принудительное охлаждение – нет.

Диаметр провода, указываем тот, который есть в наличии. У меня 0,85мм. Заметьте, указываем не сечение, а диаметр провода.

Указываем мощность каждой из вторичных обмоток, а также напряжение на них.Я указал 50В и мощность 150Вт в двух обмотках.

Схема выпрямления – двухполярная со средней точкой.

Указанные мною напряжения (50 Вольт) означают, что две вторичных обмотки, каждая из которых имеет отвод от середины, и после выпрямления, будет иметь +-50В относительно средней точки. Многие подумали бы, что указали 50В, значит, относительно ноля будет 25В в каждом плече, нет! Мы получим 50В вкаждом плече относительно среднего провода.

Далее выбираем параметры сердечника, в моем случае это “R” – тороидальный сердечник, с размерами 40-24-20 мм.

Нажимаем кнопочку “Рассчитать!”. В результате получаем количество витков и количество жил первичной и вторичной обмоток.

Намотка импульсного трансформатора.

Итак, вот мое колечко с размерами 40-24-20 мм.

Теперь его нужно изолировать каким-либо диэлектриком. Каждый выбирает свой диэлектрик, это может быть лакоткань, тряпочная изолента, стеклоткань и даже скотч, что лучше не использовать для намотки трансформаторов. Говорят скотч, разъедает эмаль провода, не могу подтвердить данный факт, но я нашел другой минус скотча. В случае перемотки, трансформатор тяжело разбирать, и весь провод становится в клею от скотча.

Я использую лавсановую ленту, которая не плавится как полиэтилен при высоких температурах. А где взять эту лавсановую ленту? Все просто, если есть обрубки экранированной витой пары, то разобрав её вы получите лавсановую пленочку шириной примерно 1,5см. Это самый идеальный вариант, диэлектрик получается красивым и качественным.

Скотчем подклеиваем лавсаночку к сердечнику и начинаем обматывать колечко, в пару слоев.

Далее мотаем первичку, в моем случае 33 витка проводом диаметра 0,85мм двумя жилами (это я перестраховался). Мотайте по часовой стрелке, как показано на картинке ниже.

Выводы первичной обмотки скручиваем и залуживаем.

Далее надеваем сверху несколько сантиметров термоусадки и подогреваем.

Следующим шагом вновь изолируем диэлектриком еще пару слоев.

Теперь начинаются самые «непонятки» и множество вопросов. Как мотать? Одним проводом или двумя? В один слой или в два слоя класть обмотку?

В ходе моего расчета я получил две вторичных обмотки с отводом от середины. Каждая обмотка содержит 13+13 витков.

Мотаем двумя жилами, в ту же сторону, как и первичную обмотку. В итоге получилось 4 вывода, два уходящих и два приходящих.

Теперь один из уходящих выводов соединяем с одним из приходящих выводов. Главное не запутаться, иначе получится, что вы соедините один и тот же провод, то есть замкнете одну из обмоток. И при запуске ваш импульсный источник питания сгорит.

Соединили начало одного провода с концом другого. Залудили. Надели термоусадку. Далее вновь обмотаем лавсановой пленкой.

Напомню, что мне нужно было две вторичных обмотки, если вам нужен трансформатор с одной вторичной обмоткой, то на этом этапе финиш. Вторую вторичную обмотку мотаем аналогично.

После чего сверху опять обматываем лавсановой пленкой, чтобы крайняя обмотка плотно прилегала и не разматывалась.

В результате получили вот такой аккуратный бублик.

Таким образом, можно рассчитать и намотать любой трансформатор, с двумя или одной вторичной обмоткой, с отводом или без отвода от середины.

Программа расчета импульсного трансформатора Lite-CalcIT СКАЧАТЬ

Статья по перемотке импульсного трансформатора из БП ПК ПЕРЕЙТИ.

Правильная намотка импульсного трансформатора

Из рисунка выше видно, что к двухтактным относят: мост, полумост и пуш-пул. В этих схемах зазора в сердечнике быть не должно, причем это касается не только силового трансформатора, но и ТГР.

Что касается однотактных схем, они бывают прямоходовые и обратноходовые, вот у них зазор в сердечнике должен быть обязательно, поэтому первым делом всегда необходимо более подробно ознакамливаться с тем, что вы делаете.

Для более наглядного примера в этой статье мы рассмотрим намотку 2-ух различных трансформаторов, один для двухтактной схемы, второй соответственно для однотактной.

Как видим из схемы — это полумост. Таким образом данный тип относится к разряду двухтактных схем, следовательно, как упоминалось в начале статьи — зазор в сердечнике не нужен.

С этим определились, но это еще не все. Перед намоткой необходимо произвести специальные вычисления (рассчитать трансформатор). Благо в интернете без особого труда можно найти и скачать специальные программы Владимира Денисенко для расчета трансформатора.

При включенной галочке программа автоматом накидывает пару витков на вторичку для зазора работы ШИМ.
Второе поле — это охлаждение. Если оно присутствует, то можно из трансформатора выжать больше мощности.

И последнее, но самое важное – необходимо указать какой сердечник будет использоваться при намотке данного трансформатора.



Стараемся равномерно укладывать витки, также необходимо избегать пересечение провода и различных узелков, петель и тому подобных явлений. От того как вы намотаете трансформатор зависит дальнейшая работа всего блока питания.

Мотаем ровно половину первички и делаем отвод, только не прямо на пин трансформатора, а вверх. Дальше будем мотать вторичку, а поверх неё оставшуюся первичку.

Припаиваемся к началу обмотки и равномерно виток к витку мотаем. При этом желательно чтобы вторичка поместилась в один слой. Но если же вы рассчитали на большее напряжение, то необходимо второй слой равномерно растянуть по всему каркасу.

Когда намотали слой, то опять же делаем отвод вверх и начинаем мотать вторую часть вторички. Мотается она точно так же, как и первая.

Вот тут уже стоит каким-либо образом пометить где у вас первая половина вторички и где вторая.

Следующий шаг – домотка первичной обмотки. В этом случае автор обычно оставляет себе пустой пин на печатной плате, чтобы туда можно было подключить среднюю точку первички.

Примечание для начинающих! Как правило начинающие радиолюбители делают свои первые блоки питания не стабилизированными на микросхемах типа IR2153 и постоянно сталкиваются со следующей проблемой: мол намотал на одно напряжение, а на выходе получил другое. Перемотка результатов не дает. В чем же дело? А дело в том, что необходимо проводить измерения при нагрузке как минимум 15% от номинала. А то получается, что выходной конденсатор зарядился до амплитудного значения, собственно его вы и измеряете, и не можете понять что не так.

Намотка трансформатора обратноходового блока питания ничем не отличается от предыдущего, только для расчета будем использовать уже другую программу из того же пакета программ – «Flyback – Программа расчета трансформатора обратноходового преобразователя» (Версия 8.1).


На этом все. Благодарю за внимание. До новых встреч!

Видеоролик автора:

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

  • Вычислительная техника
    • Микроконтроллеры микропроцессоры
    • ПЛИС
    • Мини-ПК
  • Силовая электроника
  • Датчики
  • Интерфейсы
  • Теория
    • Программирование
    • ТАУ и ЦОС
  • Перспективные технологии
    • 3D печать
    • Робототехника
    • Искусственный интеллект
    • Криптовалюты

Чтение RSS

Как сделать трансформатор своими руками для импульсного источника питания

Как самостоятельно собрать трансформатор

Разработка эффективной схемы источника питания – довольно сложная задача. Те, кто уже работал с цепями импульсного источника питания, легко согласятся с тем, что конструкция обратноходового трансформатора играет жизненно важную роль в разработке эффективной цепи электропитания. В большинстве случаев эти трансформаторы не доступны в продаже в том же наборе характеристик, который соответствует нашему проекту.

Таким образом, в этом уроке по проектированию трансформаторов мы узнаем, как создать собственный трансформатор в соответствии с требованиями нашей схемы. Обратите внимание, что этот урок охватывает только теорию, на основе которой позже в другом уроке мы построим импульсную схему на 5 В и 2 A с трансформатором ручной работы, как показано на рисунке выше для практической демонстрации.

Конструкция трансформатора импульсного источника питания имеет различные части трансформатора, которые непосредственно отвечают за его работу. Компоненты, представленные в трансформаторе, описаны ниже, мы узнаем важность каждого компонента и то, как он должен быть выбран для вашей конструкции трансформатора. Эти компоненты в большинстве случаев одинаковы и для других типов трансформаторов.

Сердечник трансформатора

Трансформаторы импульсного блока питания сильно зависят от частоты, на которой они работают. Высокая частота переключения открывает возможности выбора более малых трансформаторов. Эти высокочастотные трансформаторы используют ферритовые сердечники.

Конструкция сердечника трансформатора является самой важной вещью в строении трансформатора. Сердечник имеет другой тип AL (коэффициент индуктивности активной зоны), в зависимости от материала сердечника, размера сердечника и типа сердечника. Популярным типом материала сердечника являются N67, N87, N27, N26, PC47, PC95 и т. д. Кроме того, производитель ферритовых сердечников предоставляет подробные параметры в техническом описании, которые будут полезны при выборе сердечника для вашего трансформатора. Например, вот документация для популярного сердечника EE25.

Изображение выше представляет собой данные на сердечник EE25 из материала PC47 от популярного производителя сердечников TDK. Каждый бит информации будет необходим для создания трансформатора. Однако сердечники имеют прямую зависимость от выходной мощности, поэтому для различной мощности источника питания требуются разные форма и размер сердечника.

Далее представлен список сердечников в зависимости от мощности. Список основан на конструкции 0-100 Вт. Источник списка взят из документации Power Integration. Эта таблица будет полезна для выбора правильного сердечника для вашей конструкции трансформатора на основе его номинальной мощности.

Здесь термин TIW обозначает конструкцию с тройной изолированной обмоткой. Е-сердечники являются наиболее популярными и широко используются в трансформаторах импульсных источников. Тем не менее, E-сердечники имеют несколько корпусов, таких как EE, EI, EFD, ER и т. д. Все они выглядят как буква «E», но центральная часть отличается для каждого вещества. Общие типы сердечников E-вида проиллюстрированы ниже с помощью изображений.

EE-сердечник

EI-сердечник

ER-сердечник

EFD-сердечник

Бобина трансформатора

Бобина – это корпус для сердечников и обмоток. Такая бобина или катушка имеет эффективную ширину, которая необходима для расчета диаметров проволоки и конструкции трансформатора. Не только это, бобина трансформатора также имеет пунктирную метку, которая обеспечивает информацию для первичных обмоток. Обычно используемая катушка трансформатора EE16 показана ниже.

Читайте также  Изготовление объемных открыток своими руками

Вся обмотка трансформатора будет иметь первичную обмотку и как минимум одну вторичную обмотку, в зависимости от конструкции она может иметь больше вторичной обмотки или вспомогательной обмотки. Первичная обмотка является первой и самой внутренней обмоткой трансформатора. Она напрямую связана с первичной стороной источника питания. Обычно количество обмоток на первичной стороне больше, чем на других обмотках трансформатора. Найти первичную обмотку в трансформаторе легко; нужно просто проверить точечную сторону трансформатора на предмет первичной обмотки. Как правило, она расположена на стороне высокого напряжения силового транзистора.

В схеме импульсных источников питания вы можете заметить, что имеется линия постоянного тока высокого напряжения от высоковольтного конденсатора, соединенного с первичной стороной трансформатора, а другой конец соединен с драйвером питания или с отдельным стоковым выводом MOSFET-транзистора высокого напряжения.

Вторичная обмотка преобразует напряжение и ток на первичной стороне в требуемое значение. Найти вторичный выход немного сложно, так как в некоторых конструкциях трансформатор обычно имеет несколько вторичных выходов. Однако выходная сторона или сторона низкого напряжения цепи импульсного источника питания обычно подключена к вторичной обмотке. Одна сторона вторичной обмотки постоянного тока, GND, а другая сторона подключена через выходной диод.

Существуют различные типы импульсных схем, где для схемы драйвера требуется дополнительный источник напряжения. Вспомогательная обмотка используется для подачи этого дополнительного напряжения в схему управления. Например, если ваша микросхема драйвера работает от 12 В, то у трансформатора будет вспомогательная выходная обмотка, которая может использоваться для питания этой микросхемы.

Трансформаторы не имеют электрического соединения между разными обмотками. Поэтому перед намоткой разных обмоток необходимо обмотать изоляционные ленты вокруг обмоток для разделения. Типичные полиэфирные барьерные ленты используются с различной шириной для разных типов катушек. Толщина лент должна составлять 1-2 мил для обеспечения изоляции.

Этапы проектирования трансформатора

Теперь, когда мы знаем основные элементы трансформатора, мы можем выполнить следующие шаги, чтобы спроектировать наш собственный трансформатор.

Шаг 1: Найдите правильный сердечник для желаемого результата. Выберите правильные сердечники, перечисленные в разделе выше.

Шаг 2: Выяснение количество оборотов для первичных и вторичных обмоток. Первичный и вторичный витки взаимосвязаны и зависят от других параметров. Формула конструкции трансформатора для расчета первичного и вторичного витков следующая:

Np – количество витков первичной обмотки, Ns – количество витков вторичной обмотки, Vmin – минимальное входное напряжение, Vds – напряжение сток-исток силового транзистора, Vo – выходное напряжение, Vd – выходное напряжение диодов прямого падения напряжения, Dmax – максимальная скважность.

Следовательно, первичный и вторичный витки взаимосвязаны и характеризуются коэффициентом витков. Из приведенного выше расчета можно установить соотношение, и, таким образом, путем выбора вторичных витков можно определить первичные витки. Хорошей практикой является использование 1 витка на выходное напряжение вторичной обмотки.

Шаг 3: Следующим этапом является определение первичной индуктивности трансформатора. Это можно рассчитать по приведенной ниже формуле:

P0 – выходная мощность, z – коэффициент потерь, n – КПД, fs – частота переключения, Ip – пиковый первичный ток, KRP – пульсирующее отношение тока к пиковому значению.

Шаг 4: Следующий этап – выяснить эффективную индуктивность для нужного сердечника с зазором.

Lp – первичная индуктивность, Np – количество витков первичной обмотки.

Изображение выше показывает, что такое сердечник с зазором. Создание зазаора – это методика уменьшения значения первичной индуктивности сердечника до желаемого значения. Основные производители предоставляют сердечники с зазором для желаемого показателя эффективной индуктивности. Если такое значение недоступно, можно добавить проставки между сердечниками, чтобы получить желаемое значение.

Шаг 5: Следующий шаг – выяснить диаметр первичного и вторичного проводов. Диаметр провода для первичной обмотки в миллиметрах:

Где BWe — эффективная ширина бобины, а Np – число первичных витков.

Диаметр проводника для вторичной обмотки в миллиметрах составляет:

Ns – число витков вторичной обмотки, а M – запас с обеих сторон. Провода должны быть преобразованы в стандарт AWG или SWG.

Для вторичного проводника более 26 AWG не допускается из-за усиления скин-эффекта. В таком случае могут быть сформированы параллельные провода. При параллельной намотке проводов это означает, что для намотки вторичной стороны требуется более двух проводов, диаметр каждого провода может указывать на фактическое значение одного провода для облегчения намотки на вторичной стороне трансформатора. Вот почему вы можете увидеть некоторые трансформаторы, имеющие два провода на одной катушке.

Изготовление трансформатора для импульсного блока питания

Практическую часть статьи рассмотрим на примере схемы №2 первой части сатьи и чтобы не перепрыгивать туда-сюда расположим здесь принципиальную схему данного блока питания:

Принципиальная схема импульсного блока питания на микросхеме IR2153 (IR2155)

С13 и С14 — предназначены для развязки по постоянному напряжению обмотки трансформатора, на схеме 1 мкФ, на плате 2,2 мкФ. При частоте преобразования 60 кГц реактивное сопротивление конденсатора на 1 мкФ будет составлять Хс = 1 / 2пFC = 5,3 Ома, учитывая то, что по «схемному» вариант по переменному напряжению получается паралельное соединение, т.е. получается 2 мкФ, то реактивное сопротивление составит 2,7 Ома. При протекании через это сопротивление тока в 2 А на конднесаторе будет условное «падение» напряжения всего в 2,7 Ома х 2 А = 5,4 В, что составляет 1,8 %. Другими словами выходное напряжение блока питания будет изменяться менее чем на 2 % под нагрузкой и без нее за счет реактивного сопротивление конденсаторов. При использовании конденсаторов на 2,2 мкФ в качестве С13 и С14 реактивное сопротивление составляет 1,2 Ома и под нагрузкой оно изменится на 0,8 %. Учитывая то, что напряжениесети может колебаться до 7% и это считается нормой изменения в 0,8 — 2 % врядли кто заметит, поэтому можно использовать конденсаторы от 1 мкФ до 4,7 мкФ, правда в эту плату габариты емкостей на 4,7 мкФ уже не будут слишком велики.
Сопротивление R20 может колебаться в гораздо бОльших пределах, поскольку его номинал зависит от потребляемого вентилятором принудительного охлажедения и полученным в конечном итоге выходного напряжения.
Сомнения в итоговом напряжении не напрасны, поскольку силовой трансформатор высокочастотный и имеет небольшое количество витков, а мотать дробные части витка довольно проблематично. Для примера рассмотрим случай, когда первичная обмотка составляет 17 витков. Прилагаемое к ней напряжение равно 155 В (после выпрямителя на VD1 получается 310 В, следовательно половина напряжение питания и есть 155 В). Воспользуемся пропорцией U перв / Q перв = U втор / Q втор , где U перв — напряжение на первичной обмотке, Q перв — количество витков первичной обмотки, U втор — напряжение вторичной обмотки, Q втор — количество витков вторичной обмотки и выясним, какие вторичные напряжения мы можем получить:
155 / 17 = ? / 5, где » ? » — выходное напряжение. Если во вторичной обмотке у нас будет 5 витков, то выходное напряжение будет составлять 45 В, если вторичка будет 4 витка, то выходное напряжение трансформатора составит 36 В.
Как видите получить напряжение ровно 40 вольт уже проблематично — нужно мотать 4,4 витка, а реальность показывает, что использовать обмотки не кратные половине витка довольно рискованно — можно намагнитить трансформатор и потерять силовые транзисторы.
В конечном итоге после монтажа компонентов печатная плата блока питания приобретет следующий вид:

На плате пока нет диодных мостов, силовых транзисторов, радиатров и моточных деталей, о которых сейчас и поговорим. При изготовлении импульсных блоков питания не стоит забывать о скин эффекте, который проявляется при протекании через проводник высокочастотного сигнала. Смысл этого эффекта заключается в том, что чем выше частота переменного напряжениея, тем меньше протекает ток через середину проводника, т.е. ток как будто стремится выйти на поверхность. Отсюда и название SKIN -кожа, шкура. По этому для высокочастотных трансформаторов необходимое от протекающего тока сечение получают методом сложения в жгут нескольких проводников меньшего диаметра, тем самым существенно снижая скин эффект и увеличивая КПД преобразователя.
Самым популярным способом сложения проводников является витой жгут. Определившись с длиной провода, необходимого для обмотки (одинарным проводм мотают необходимое количество витков и добавляют к полученной длине еще 15-20%) необходмое количество проводов растягиваю на эту длину а затем при помощи дрели и воротка свивают в один жгут:

Изготовление ленточного жгута более трудоемко — провода растягивают в непосредственной близости другу к другу и склеивают полиуритановым клеем, типа «МОМЕНТ КРИСТАЛЛ». В результате получается гибкая лента, намоитка которой позоволяет добится наибольшей плотности намотки:

Перед намоткой ферритовое кольцо следует подготовить. Прежде всего необходимо закруглить углы, поскольку они с легкостью повреждают лак на обмоточном проводе:

Затем необходимо кольцо изолировать, поскольку феррит имеет достаточно низкое сопротивление и в случае повреждения лака на обмоточном проводе может произойти межвиитковое замыкание. В середине, на азднем плане кольцо обмотано обычной бумагой для принтера, справа — бумага пропитана эпоксидным клеем, в середине спереди — наиболее предпочтительный материал — фторопластовая пленка:

Так же кольца можно обматывать матерчатой изолентой, но она довольно толстая и существенно сокращает размер окна, а это не очень хорошо.
Используя в качестве сердечника ферритовое кольцо обмотку необходимо равномерно распределить по всему сердечнику, что довольно существенно увеличивает магнитную связь обмоток и уменьшает создаваемые импульсным трансформатором электро-магнитные помехи:

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector